Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, hybrid gliadin electrospun fibers containing inclusion complexes of ferulic acid (FA) with hydroxypropyl-beta-cyclodextrins (FA/HP-β-CD-IC) were prepared as a strategy to increase the stability and solubility of the antioxidant FA. Inclusion complex formation between FA and HP-β-CD was confirmed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), and X-ray diffraction (XRD). After adjusting the electrospinning conditions, beaded-free fibers of gliadin incorporating FA/HP-β-CD-IC with average fiber diameters ranging from 269.91 ± 73.53 to 271.68 ± 72.76 nm were obtained. Control gliadin fibers containing free FA were also produced for comparison purposes. The incorporation of FA within the cyclodextrin molecules resulted in increased thermal stability of the antioxidant compound. Moreover, formation of the inclusion complexes also enhanced the FA photostability, as after exposing the electrospun fibers to UV light during 60 min, photodegradation of the compound was reduced in more than 30%. Moreover, a slower degradation rate was also observed when compared to the fibers containing the free FA. Results from the release into two food simulants (ethanol 10% and acetic acid 3%) and PBS also demonstrated that the formation of the inclusion complexes successfully resulted in improved solubility, as reflected from the faster and greater release of the compounds in the three assayed media. Moreover, in both types of hybrid fibers, the antioxidant capacity of FA was kept, thus confirming the suitability of electrospinning for the encapsulation of sensitive compounds, giving raise to nanostructures with potential as active packaging structures or delivery systems of use in pharmaceutical or biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266051 | PMC |
http://dx.doi.org/10.3390/nano8110919 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!