Differential inclusion or skipping of microexons is an increasingly recognized class of alternative splicing events. However, the functional significance of microexons and their contribution to signaling diversity is poorly understood. The Met receptor tyrosine kinase (RTK) modulates invasive growth and migration in development and cancer. Here, we show that microexon switching in the Arf6 guanine nucleotide exchange factor cytohesin-1 controls Met-dependent cell migration. Cytohesin-1 isoforms, differing by the inclusion of an evolutionarily conserved three-nucleotide microexon in the pleckstrin homology domain, display differential affinity for PI(4,5)P (triglycine) and PI(3,4,5)P (diglycine). We show that selective phosphoinositide recognition by cytohesin-1 isoforms promotes distinct subcellular localizations, whereby the triglycine isoform localizes to the plasma membrane and the diglycine to the leading edge. These data highlight microexon skipping as a mechanism to spatially restrict signaling and provide a mechanistic link between RTK-initiated phosphoinositide microdomains and Arf6 during signal transduction and cancer cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314551 | PMC |
http://dx.doi.org/10.1083/jcb.201804106 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
The electrochemical proton reactivity of transition metal complexes has received intensive attention in catalyst research. The proton-coupled electron transfer (PCET) process, influenced by the coordination geometry, determines the catalytic reaction mechanisms. Additionally, the p value of a proton source, as an external factor, plays a crucial role in regulating the proton transfer step.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.
View Article and Find Full Text PDFIn motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.
View Article and Find Full Text PDFSurgery
January 2025
Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!