The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondrial apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (, , or ) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor and downstream up-regulation of the mitochondrial chaperone These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279404PMC
http://dx.doi.org/10.1084/jem.20180570DOI Listing

Publication Analysis

Top Keywords

apoptosis resistance
12
prc2 loss
8
cell acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
mitochondrial priming
8
mitochondrial apoptosis
8
mitochondrial chaperone
8
mitochondrial
7
apoptosis
6

Similar Publications

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Purpose: Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14.

View Article and Find Full Text PDF

Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.

Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.

View Article and Find Full Text PDF

Precision medicine in less-defined subtype diffuse large B-cell lymphoma (DLBCL) remains a challenge due to the heterogeneous nature of the disease. Programmed cell death (PCD) pathways are crucial in the advancement of lymphoma and serve as significant prognostic markers for individuals afflicted with lymphoid cancers. To identify robust prognostic biomarkers that can guide personalized management for less-defined subtype DLBCL patients, we integrated multi-omics data derived from 339 standard R-CHOP-treated patients diagnosed with less-defined subtype DLBCL from three independent cohorts.

View Article and Find Full Text PDF

Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!