GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells via the PI3K-AKT-mTOR signaling pathway.

Biochem Biophys Res Commun

Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China. Electronic address:

Published: December 2018

Objective: In this study, we investigated whether the GLP-1RA, liraglutide, affected differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to mature brown adipocytes and involvement of PI3K/AKT/mTOR signaling pathway in this process.

Methods: C3H10T1/2 MSCs were induced to differentiate into brown adipocytes and treated with liraglutide (10 nM and 100 nM) for 0, 2, 4, 6 and 8 days with or without PI3K inhibitor LY294002. Oil red O staining was used for lipid droplet staining and cell proliferation was determined by cell counts. Quantitative realtime PCR was employed to determine the expression of adipogenic and mitochondrial genes, mitochondrial DNA (mtDNA). Western blot analyses were used for quantification of protein levels in PI3K/AKT/mTOR signaling pathway.

Results: Liraglutide increased proliferation of C3H10T1/2 MSCs and formation of multilocular lipid droplets during differentiation. Adipogenic and mitochondrial genes, mtDNA were promoted by liraglutide. Moreover, liraglutide treatment increased the levels of phosphorylated AKT and mTOR. LY294002 not only attenuated differentiation of C3H10T1/2 MSCs into brown adipocytes, but also reduced phosphorylated AKT and mTOR levels. However, co-treatment with liraglutide and LY294002 decreased the expression of adipogenic and mitochondrial genes, mtDNA, and phosphorylated AKT and mTOR levels compared to C3H10T1/2 MSCs treated with liraglutide 100 nM.

Conclusion: GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells, and PI3K/AKT/mTOR signaling pathway is involved in GLP-1RA-mediated promotion of differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.10.197DOI Listing

Publication Analysis

Top Keywords

c3h10t1/2 mscs
16
c3h10t1/2 mesenchymal
12
mesenchymal stem
12
stem cells
12
signaling pathway
12
brown adipocytes
12
pi3k/akt/mtor signaling
12
adipogenic mitochondrial
12
mitochondrial genes
12
phosphorylated akt
12

Similar Publications

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression.

J Cell Sci

January 2025

Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.

The GLI1/GLI2/GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R), and in activation of GLI2.

View Article and Find Full Text PDF

The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions.

View Article and Find Full Text PDF

Bone morphogenetic protein 9 (BMP9) functions as a potent inducer of osteogenic differentiation in mesenchymal stem cells (MSCs), holding promise for bone tissue engineering. However, BMP9 also concurrently triggers lipogenic differentiation in MSCs, potentially compromising its osteogenic potential. In this study, we explored the role of DNA damage inducible transcript 3 (DDIT3) in regulating the balance between BMP9-induced osteogenic and lipogenic differentiation in MSCs.

View Article and Find Full Text PDF

Obesity and osteoporosis are two prevalent conditions that are becoming increasingly common worldwide, primarily due to aging populations, imbalanced energy intake, and sedentary lifestyles. Obesity, characterized by excessive fat accumulation, and osteoporosis, marked by reduced bone density and increased fracture risk, are often interconnected. High-fat diets (HFDs) can exacerbate both conditions by promoting bone marrow adiposity and bone loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!