Background: Resistance of Plasmodium falciparum to anti-malarial drugs has hampered efforts to eradicate malaria. Recent reports of a decline in the prevalence of chloroquine-resistant P. falciparum in several countries, including Malawi and Zambia, is raising the hope of reintroducing chloroquine in the near future, ideally in combination with another anti-malarial drug for the treatment of uncomplicated malaria. In Côte d'Ivoire, the decrease in the clinical efficacy of chloroquine, in addition to a high proportion of clinical isolates carrying the Thr-76 mutant allele of the pfcrt gene, had led to the discontinuation of the use of chloroquine in 2004. Previous studies have indicated the persistence of a high prevalence of the Thr-76 mutant allele despite the withdrawal of chloroquine as first-line anti-malarial drug. This present study is conducted to determine the prevalence of the Thr-76T mutant allele of the Pfcrt gene after a decade of the ban on the sale and use of chloroquine in Côte d'Ivoire.
Results: Analysis of the 64 sequences from all three study sites indicated a prevalence of 15% (10/64) of the Thr-76 mutant allele against 62% (40/64) of the Lys-76 wild-type allele. No mutation of the allele Thr-76 was observed at Anonkoua Kouté while this mutant allele was in 31% (5/16) and 25% (5/20) of isolate sequences from Port-Bouët and Ayamé respectively.
Conclusion: More than a decade after the discontinuation of the use of chloroquine in Côte d'Ivoire, the proportion of parasites sensitive to this anti-malarial seems to increase in Anonkoua-kouté, Port-bouët and Ayamé.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223040 | PMC |
http://dx.doi.org/10.1186/s12936-018-2551-7 | DOI Listing |
PLoS One
January 2025
Department of Biology, University of Padova, Padova, Italy.
The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.
View Article and Find Full Text PDFD e h ydro d olichyl d iphosphate s ynthase (DHDDS) is an essential enzyme required for several forms of protein glycosylation in all eukaryotic cells. Surprisingly, three mutant alleles, ( (K42E/K42E), (T206A/K42E), and found in only one patient, (R98W/K42E) have been reported that cause non-syndromic retinitis pigmentosa (RP59), an inherited retinal degeneration (IRD). Because T206A was only observed heterozygously with the K42E allele in RP59 patients, we used CRISPR/CAS9 technology to generate T206A/T206A, and subsequently T206A/K42E alleles in mice to assess the contribution of the T206A allele to the disease phenotype, to model the human disease, and to compare resulting phenotypes to our homozygous K42E mouse model.
View Article and Find Full Text PDFBacteria can change morphology in response to stressors and changes in their environment, including infection of a host. We previously identified the bacterial species, , which uses nutrient-induced filamentation as a novel mechanism for cell-to-cell spreading in the intestinal epithelial cells of a nematode host. To further investigate the conservation of nutrient-induced filamentation in Bordetellae, we utilized the turkey-infecting species which filaments in vitro when switched from a standard growth media to an enriched media.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFZebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!