Fabrication of SiN Thin Film of Micro Dielectric Barrier Discharge Reactor for Maskless Nanoscale Etching.

Micromachines (Basel)

Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.

Published: December 2016

The prevention of glow-to-arc transition exhibited by micro dielectric barrier discharge (MDBD), as well as its long lifetime, has generated much excitement across a variety of applications. Silicon nitride (SiN) is often used as a dielectric barrier layer in DBD due to its excellent chemical inertness and high electrical permittivity. However, during fabrication of the MDBD devices with multilayer films for maskless nano etching, the residual stress-induced deformation may bring cracks or wrinkles of the devices after depositing SiN by plasma enhanced chemical vapor deposition (PECVD). Considering that the residual stress of SiN can be tailored from compressive stress to tensile stress under different PECVD deposition parameters, in order to minimize the stress-induced deformation and avoid cracks or wrinkles of the MDBD device, we experimentally measured stress in each thin film of a MDBD device, then used numerical simulation to analyze and obtain the minimum deformation of multilayer films when the intrinsic stress of SiN is -200 MPa compressive stress. The stress of SiN can be tailored to the desired value by tuning the deposition parameters of the SiN film, such as the silane (SiH₄)⁻ammonia (NH₃) flow ratio, radio frequency (RF) power, chamber pressure, and deposition temperature. Finally, we used the optimum PECVD process parameters to successfully fabricate a MDBD device with good quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190089PMC
http://dx.doi.org/10.3390/mi7120232DOI Listing

Publication Analysis

Top Keywords

dielectric barrier
12
stress sin
12
mdbd device
12
thin film
8
micro dielectric
8
barrier discharge
8
multilayer films
8
stress-induced deformation
8
cracks wrinkles
8
sin tailored
8

Similar Publications

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors.

Nat Commun

January 2025

Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.

View Article and Find Full Text PDF

A novel, compact, and automated laser ablation dielectric barrier discharge thin layer chromatography-mass spectrometry (LA-DBD-TLC-MS) device was developed for the rapid detection of biogenic amines (BAs) in fishery products. This plug-and-play system integrates thermal desorption via diode laser, DBD plasma ionization, and tandem MS detection, with key operational parameters optimized through experimental and computational methods. Utilizing nanoscale carbon black as a matrix, the device achieved a detection limit of 0.

View Article and Find Full Text PDF

We report the pressure-temperature (-) phase diagram, the origin of the subglass dynamics, and the crystallization kinetics of the biobased polyester poly(ethylene 2,5-furanoate) (PEF), through dielectric spectroscopy (DS) measurements performed as a function of temperature and pressure. The phase diagram comprises four different "phases"; glass, quenched melt, crystalline, and normal melt. The cold crystallization temperature, , increases linearly with pressure (according to the Clausius-Clapeyron equation) as / ∼ 240 K·GPa and is accompanied by a small change in specific volume (Δ = 0.

View Article and Find Full Text PDF

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!