Modeling of Microdevices for SAW-Based Acoustophoresis - A Study of Boundary Conditions.

Micromachines (Basel)

Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark.

Published: October 2016

We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of a piezoelectric transducer that actuates the device by surface acoustic waves (SAW). We compare the resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models comprising of only a water domain with simplified, approximate boundary conditions representing the surrounding solids. The reduced models are found to only approximate the acoustically hard pyrex systems to a limited degree for large wall thicknesses and but not very well for acoustically soft PDMS systems shorter than the PDMS damping length of 3 mm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190298PMC
http://dx.doi.org/10.3390/mi7100182DOI Listing

Publication Analysis

Top Keywords

boundary conditions
8
modeling microdevices
4
microdevices saw-based
4
saw-based acoustophoresis
4
acoustophoresis study
4
study boundary
4
conditions finite-element
4
finite-element method
4
method modeling
4
modeling acoustophoretic
4

Similar Publications

Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.

View Article and Find Full Text PDF

Multi-item retro-cueing effects refer to better working memory performance for multiple items when they are cued after their offset compared to a neutral condition in which all items are cued. However, several studies have reported boundary conditions, and findings have also sometimes failed to replicate. We hypothesized that a strategy to focus on only one of the cued items could possibly yield these inconsistent patterns.

View Article and Find Full Text PDF

Purpose: Despite robust quality improvement efforts in healthcare, learning from patient safety incidents remains difficult. Our study explores counter-vailing powers shaping learning processes and possibilities in healthcare organizations, with a focus on social, political and organizational dynamics of learning.

Design/methodology/approach: Deploying concepts of situated curriculum, boundary work and interconnected knowledge practices, we interviewed staff and physicians ( = 15) in a large Academic Health Science Centre in Canada about their experiences of incident investigations and resultant information sharing.

View Article and Find Full Text PDF

Functional alignment is a feasible alignment strategy in robotic assisted total knee arthroplasty for knee osteoarthritis with extra-articular deformity - A case series.

SICOT J

January 2025

Department of Orthopaedic Surgery, Joint Replacement Unit, Kuala Lumpur Hospital, Ministry of Health Malaysia, Jalan Pahang, 50586 Kuala Lumpur, Malaysia.

Introduction: Extraarticular deformity (EAD) with knee arthritis is a complex condition involving tri-planar bone deformity with pathological malalignment and chronic soft tissue contracture or laxity in the knee joint. Intraarticular correction by TKA, which was previously performed with conventional manual jig by mechanical alignment technique, had its limits and difficulties especially extensive soft tissue release and risk of jeopardizing the collateral ligaments. Robotic technology allows for reproducible and precise execution of surgical plan and allows adjustment to various new personalised alignment philosophy including functional alignment (FA).

View Article and Find Full Text PDF

In wildland firefighting, the air gap (AG) between clothing and the human body can effectively decrease heat transferred to skin but has a negative impact on thermal aging of clothing. Heat transfer to skin from a fire source can led to burn injuries and heat is transmitted between adjacent AGs parallel to the skin surface. An open AG simulator was developed to explore the dual effects of the AG on fabric thermal aging and skin thermal protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!