Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control.

Micromachines (Basel)

Distributed Intelligent Systems and Algorithms Laboratory (DISAL), School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL ENAC IIE DISAL, Building GR, Station 2, 1015 Lausanne, Switzerland.

Published: August 2016

Stochastic self-assembly provides promising means for building micro-/nano-structures with a variety of properties and functionalities. Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive nano-/micro-particles to intelligent miniaturized robots. Depending on the capabilities of the constituting modules, different approaches have been utilized for controlling and modeling these systems. In the quest of a unifying control and modeling framework and within the broader perspective of investigating how stochastic control strategies can be adapted from the centimeter-scale down to the (sub-)millimeter-scale, as well as from mechatronic to MEMS-based technology, this work presents the outcomes of our research on self-assembly during the past few years. As the first step, we leverage an experimental platform to study self-assembly of water-floating passive modules at the centimeter scale. A dedicated computational framework is developed for real-time tracking, modeling and control of the formation of specific structures. Using a similar approach, we then demonstrate controlled self-assembly of microparticles into clusters of a preset dimension in a microfluidic chamber, where the control loop is closed again through real-time tracking customized for a much faster system dynamics. Finally, with the aim of distributing the intelligence and realizing programmable self-assembly, we present a novel experimental system for fluid-mediated programmable stochastic self-assembly of active modules at the centimeter scale. The system is built around the water-floating 3-cm-sized Lily robots specifically designed to be operative in large swarms and allows for exploring the whole range of fully-centralized to fully-distributed control strategies. The outcomes of our research efforts extend the state-of-the-art methodologies for designing, modeling and controlling massively-distributed, stochastic self-assembling systems at different length scales, constituted of modules from centimetric down to sub-millimetric size. As a result, our work provides a solid milestone in structure formation through controlled self-assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190313PMC
http://dx.doi.org/10.3390/mi7080138DOI Listing

Publication Analysis

Top Keywords

stochastic self-assembly
12
self-assembly
8
centimetric sub-millimetric
8
modeling control
8
control modeling
8
self-assembling systems
8
constituted modules
8
control strategies
8
modules centimeter
8
centimeter scale
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!