Unconventional Electrochemistry in Micro-/Nanofluidic Systems.

Micromachines (Basel)

MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: May 2016

Electrochemistry is ideally suited to serve as a detection mechanism in miniaturized analysis systems. A significant hurdle can, however, be the implementation of reliable micrometer-scale reference electrodes. In this tutorial review, we introduce the principal challenges and discuss the approaches that have been employed to build suitable references. We then discuss several alternative strategies aimed at eliminating the reference electrode altogether, in particular two-electrode electrochemical cells, bipolar electrodes and chronopotentiometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189913PMC
http://dx.doi.org/10.3390/mi7050081DOI Listing

Publication Analysis

Top Keywords

unconventional electrochemistry
4
electrochemistry micro-/nanofluidic
4
micro-/nanofluidic systems
4
systems electrochemistry
4
electrochemistry ideally
4
ideally suited
4
suited serve
4
serve detection
4
detection mechanism
4
mechanism miniaturized
4

Similar Publications

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates.

Chem Commun (Camb)

January 2025

Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.

A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access -substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of Ir-Ir-Ir exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.

View Article and Find Full Text PDF

Electrochemical Deposition of Silver Nanoparticle Assemblies on Carbon Ultramicroelectrode Arrays.

Chemphyschem

November 2024

Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, United States.

Silver nanoparticle (AgNP) assemblies combined with electrode surfaces have a myriad of applications in electrochemical energy storage and conversion devices, (bio)sensor development, and electrocatalysis. Among various nanoparticle synthesis methods, electrochemical deposition is advantageous due to its ability to control experimental parameters, enabling the formation of low-nanoscale (<50 nm) particles with narrow size distributions. Herein, we report the electrodeposition of AgNPs on a unique electrode platform based on carbon ultramicroelectrode arrays (CUAs), exploring several experimental variables including potential, time, and silver ion concentration.

View Article and Find Full Text PDF

Single-entity electrochemistry has gained significant attention for the analysis of individual cells, nanoparticles, and droplets, which is leveraged by robust electrochemical techniques such as chronoamperometry and cyclic voltammetry (CV) to extract information about single entities, including size, kinetics, mass transport, etc. For an in-depth understanding such as dynamic interaction between the electrode and a single entity, the unconventional fast electrochemical technique is essential for time-resolved analysis. This fast experimental technique is unfortunately hindered by a substantial nonfaradaic response.

View Article and Find Full Text PDF

Hydraulic energy is a key component of the global energy mix, yet there exists no practical way of harvesting it at small scales, from flows with low Reynolds number. This has triggered a search for alternative hydroelectric conversion methodologies, leading to unconventional proposals based on droplet triboelectricity, water evaporation, osmotic energy, or flow-induced ionic Coulomb drag. Yet, these approaches systematically rely on ions as intermediate charge carriers, limiting the achievable power density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!