Background: Impacts of invasive species on native communities are often difficult to assess, because they depend on a range of factors, such as species identity and traits. Such context-dependencies are poorly understood yet, but knowledge is required to predict the impact of invasions.

Materials And Methods: We assessed species- and developmental stage-specificity of competitive and allelopathic effects of the invasive plant Impatiens glandulifera on different developmental stages of four native plant species. While some studies have shown a reduction in plant growth caused by I. glandulifera, the magnitude of its impact is ambiguous. For our study we used seedlings and juveniles of I. glandulifera and the native target species Geum urbanum, Filipendula ulmaria, Urtica dioica, and Salix fragilis (seedlings only of the latter), which often co-occur with I. glandulifera in different habitats. Plants were grown in competition with I. glandulifera or treated with I. glandulifera leaf material, or 2-metoxy-1,4-naphtoquinone (2-MNQ), its supposedly main allelochemical.

Results And Conclusions: Overall I. glandulifera had a negative effect on the growth of all target species depending on the species and on the plant's developmental stage. F. ulmaria was the least affected and U. dioica the most, and seedlings were less affected than juveniles. The species-specific response to I. glandulifera may lead to an altered community composition in the field, while growth reduction of seedlings and juveniles should give I. glandulifera an advantage in cases where plant recruitment is crucial. 2-MNQ led to minor reductions in plant growth, suggesting that it may not be the only allelopathic substance of I. glandulifera. Surprisingly, I. glandulifera was not fully tolerant to 2-MNQ. This autotoxicity could contribute to I. glandulifera population dynamics. We conclude that I. glandulifera reduces the growth of native vegetation and alters early successional stages without fully hindering it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221290PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205843PLOS

Publication Analysis

Top Keywords

glandulifera
14
seedlings juveniles
12
species- developmental
8
impatiens glandulifera
8
plant growth
8
juveniles glandulifera
8
target species
8
species
6
plant
5
growth
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!