The problem of describing how different brain areas interact between each other has been granted a great deal of attention in the last years. The idea that neuronal ensembles behave as oscillators and that they communicate through synchronization is now widely accepted. To this regard, EEG and MEG provide the signals that allow the estimation of such communication in vivo. Hence, phase-based metrics are essential. However, the application of phased-based metrics for measuring brain connectivity has proved problematic so far, since they appear to be less resilient to noise as compared to amplitude-based ones. In this paper, we address the problem of designing a purely phase-based brain connectivity metric, insensitive to volume conduction and resilient to noise. The proposed metric, named phase linearity measurement (PLM), is based on the analysis of similar behaviors in the phases of the recorded signals. The PLM is tested in two simulated datasets as well as in real MEG data acquired at the Naples MEG center. Due to its intrinsic characteristics, the PLM shows considerable noise rejection properties as compared to other widely adopted connectivity metrics. We conclude that the PLM might be valuable in order to allow better estimation of phase-based brain connectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2018.2873423 | DOI Listing |
Sci Rep
January 2025
Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
Cognitive impairment (CI) frequently occurs in patients with systemic lupus erythematosus (SLE) and may result from neuroinflammation processes and neurovascular changes in the brain. The cerebral hemodynamics underlying SLE with CI (SLE-CI) remain unclear. 97 patients with SLE and 51 heathy controls (HCs) matched for age and gender underwent MRI.
View Article and Find Full Text PDFNat Commun
January 2025
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
Structural brain organization in infancy is associated with later cognitive, behavioral, and educational outcomes. Due to practical limitations, such as technological advancements and data availability of fetal MRI, there is still much we do not know about the early emergence of topological organization. We combine the developing Human Connectome Project's large infant dataset with generative network modeling to simulate the emergence of network organization over early development.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychology, University of Georgia, Athens, Georgia, USA.
Resting-state functional connectivity analyses have been used to examine synchrony in neural networks in substance use disorders (SUDs), with the default mode network (DMN) one of the most studied. Prior research has generally found less DMN synchrony during use and greater synchrony during cessation, although little research has utilized this method with opioid use. This study examined resting brain activity in treatment-seeking persons who use opioids at two points-when using opioids and when opioid-free-to determine whether the DMN exhibits different levels of connectivity during opioid use and cessation and whether differences in connectivity predict subsequent relapse.
View Article and Find Full Text PDFBMJ Open
January 2025
Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark.
Introduction: Alcohol use disorder (AUD) is a massive burden for the individual, relatives and society. Despite this, the treatment gap is wide compared with other mental health disorders. Treatment options are sparse, with only three Food and Drug Administration (FDA)-approved pharmacotherapies.
View Article and Find Full Text PDFClin Neurol Neurosurg
January 2025
Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA.
Supplementary motor area (SMA) syndrome is characterized by contralateral akinesia and mutism, and frequently occurs following resection of tumors involving the superior frontal gyrus. The frontal aslant tract (FAT), involved in functional connectivity of the supplementary area and other related large-scale brain networks, is implicated in the pathogenesis of, and recovery from, SMA syndrome. However, intraoperative neuromonitoring of the FAT is inconsistent and poorly reproducible, leading to a high rate of postoperative SMA syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!