Metal-induced layer-exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality, uniform multilayer graphene (MLG) directly on an insulating material. Here, we investigated the effect of transition-metal species on the interaction between metals and a-C in the temperature range of 600-1000 °C. As a result, metals were classified into four groups: (1) layer exchange (Co, Ni, Cr, Mn, Fe, Ru, Ir, and Pt), (2) carbonization (Ti, Mo, and W), (3) local MLG formation (Pd), and (4) no graphitization (Cu, Ag, and Au). Some layer-exchange metals allowed for low-temperature MLG synthesis at 600 °C, whereas others allowed for high-quality MLG with a Raman G/D peak ratio of up to 8.3. Based on the periodic table, we constructed metal selection guidelines for growing MLG on an insulator, opening the door for applications that combine advanced electronic devices with carbon materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b14960 | DOI Listing |
Nanotechnology
September 2021
Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
Low-temperature synthesis of multilayer graphene (MLG) on arbitrary substrates is the key to incorporating MLG-based functional thin films, including transparent electrodes, low-resistance wiring, heat spreaders, and battery anodes in advanced electronic devices. This paper reviews the synthesis of MLG via the layer exchange (LE) phenomenon between carbon and metal from its mechanism to the possibility of device applications. The mechanism of LE is completely different from that of conventional MLG precipitation methods using metals, and the resulting MLG exhibits unique features.
View Article and Find Full Text PDFACS Omega
September 2019
Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
Layer exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality multilayer graphene (MLG) on insulators at low temperatures. We investigated the effects of the a-C/Ni multilayer structure on the quality of MLG formed by Ni-induced layer exchange. The crystal quality and electrical conductivity of MLG improved dramatically as the number of a-C/Ni multilayers increased.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Institute of Applied Physics , University of Tsukuba, 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8573 , Japan.
Metal-induced layer-exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality, uniform multilayer graphene (MLG) directly on an insulating material. Here, we investigated the effect of transition-metal species on the interaction between metals and a-C in the temperature range of 600-1000 °C. As a result, metals were classified into four groups: (1) layer exchange (Co, Ni, Cr, Mn, Fe, Ru, Ir, and Pt), (2) carbonization (Ti, Mo, and W), (3) local MLG formation (Pd), and (4) no graphitization (Cu, Ag, and Au).
View Article and Find Full Text PDFNanoscale
May 2016
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2015
†Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
Transfer-free fabrication of vertical Ge nanowires (NWs) on a plastic substrate is demonstrated using a vapor-liquid-solid (VLS) method. The crystal quality of Ge seed layers (50 nm thickness) prepared on plastic substrates strongly influenced the VLS growth morphology, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!