Background: Therapeutic hypothermia is the standard-of-care treatment for infants diagnosed with moderate-to-severe hypoxic-ischemic encephalopathy (HIE). MRI for assessing brain injury is usually performed after hypothermia because of logistical challenges in bringing acutely sick infants receiving hypothermia from the neonatal intensive care unit (NICU) to the MRI suite. Perhaps examining and comparing early cerebral oxygen metabolism disturbances to those after rewarming will lead to a better understanding of the mechanisms of brain injury in HIE and the effects of therapeutic hypothermia.

Objective: The objectives were to assess the feasibility of performing a novel T2-relaxation under spin tagging (TRUST) MRI technique to measure venous oxygen saturation very early in the time course of treatment, 18-24 h after the initiation of therapeutic hypothermia, to provide a framework to measure neonatal cerebral oxygen metabolism noninvasively, and to compare parameters between early and post-hypothermia MRIs.

Materials And Methods: Early (18-24 h after initiating hypothermia) MRIs were performed during hypothermia treatment in nine infants with HIE (six with moderate and three with severe HIE). Six infants subsequently had an MRI after hypothermia. Mean values of cerebral blood flow, oxygen extraction fraction, and cerebral metabolic rate of oxygen from MRIs during hypothermia were compared between infants with moderate and severe HIE; and in those with moderate HIE, we compared cerebral oxygen metabolism parameters between MRIs performed during and after hypothermia.

Results: During the initial hypothermia MRI at 23.5±5.2 h after birth, infants with severe HIE had lower oxygen extraction fraction (P=0.04) and cerebral metabolic rate of oxygen (P=0.03) and a trend toward lower cerebral blood flow (P=0.33) compared to infants with moderate HIE. In infants with moderate HIE, cerebral blood flow decreased and oxygen extraction fraction increased between MRIs during and after hypothermia (although not significantly); cerebral metabolic rate of oxygen (P=0.93) was not different.

Conclusion: Early MRIs were technically feasible while maintaining hypothermic goal temperatures in infants with HIE. Cerebral oxygen metabolism early during hypothermia is more disturbed in severe HIE. In infants with moderate HIE, cerebral blood flow decreased and oxygen extraction fraction increased between early and post-hypothermia scans. A comparison of cerebral oxygen metabolism parameters between early and post-hypothermia MRIs might improve our understanding of the evolution of HIE and the benefits of hypothermia. This approach could guide the use of adjunctive neuroprotective strategies in affected infants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00247-018-4283-9DOI Listing

Publication Analysis

Top Keywords

cerebral oxygen
24
oxygen metabolism
24
severe hie
16
cerebral blood
16
blood flow
16
oxygen extraction
16
extraction fraction
16
infants moderate
16
moderate hie
16
cerebral
13

Similar Publications

Ageing is a major risk factor for neurodegenerative diseases like Alzheimer's disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging.

View Article and Find Full Text PDF

circLOC375190 promotes autophagy through modulation of the mTORC1/TFEB axis in acute ischemic stroke-induced neurological injury.

Clinics (Sao Paulo)

January 2025

Department of Neurology, Daqing Oilfield General Hospital, Daqing City, Heilongjiang Province, China. Electronic address:

Objective: The authors explored differentially expressed circRNAs in Acute Ischemic Stroke (AIS) and revealed the role and potential downstream molecular mechanisms of circLOC375190.

Methods: circLOC375190 expression was modulated by lentiviral injection in the brain of transient Middle Cerebral Artery Occlusion (tMCAO) mice. Neurological dysfunction was assessed, as well as infarction size, histopathological changes, and neuronal apoptosis in tMCAO mice.

View Article and Find Full Text PDF

The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.

View Article and Find Full Text PDF

Introduction: Resting state-fMRI, provides a sensitive method for detecting changes in brain functional integrity, both with respect to regional oxygenated blood flow and whole network connectivity. The primary goal of this report was to examine alterations in functional connectivity in collegiate American football players after a season of repetitive head impact exposure.

Methods: Collegiate football players completed a rs-fMRI at pre-season and 1 week into post-season.

View Article and Find Full Text PDF

Background: Interleukin-6 (IL-6) represents one of the main molecules involved in inflammatory responses, which can be altered in either patients with cognitive impairment or obstructive sleep apnea (OSA). The present study aimed to evaluate serum IL-6 levels and cognitive performance in patients with severe OSA (Apnea-Hypopnea Index - AHI >30/h).

Methods: Thirty patients with severe OSA were compared to 15 controls similar in age, sex, and Body Mass Index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!