The neuromuscular junction (NMJ) is a specialized synapse between motor neurons and the muscle fibers they innervate. Due to the complexity of various signalling molecules and pathways, in vivo NMJs are difficult to study. Therefore, in vitro motor neuron-muscle co-culture plays a pivotal role in studying the mechanisms of NMJ formation associated with neurodegenerative diseases. There is a growing need to develop novel methodologies that can be used to develop long-term cultures of NMJs. To date, there have been few studies on NMJ development and long-term maintenance of the system, which is also the main challenge for the current in vitro models of NMJs. In this study, we demonstrate a long-term co-culture system of primary embryonic motor neurons from Sprague-Dawley rats and C2C12 cells on both random and aligned electrospun polylactic acid (PLA) nanofibrous scaffolds. This is the first study to explore the role of electrospun nanofibers in the long-term maintenance of NMJs. PLA nanofibrous scaffolds provide better contact guidance for C2C12 cells aligning along the fibers, thus guiding myotube formation. We can only maintain the co-culture system on a conventional glass substrate for 2 weeks, whilst 55% and 70% of the cells still survived on random and aligned PLA substrates after 7 weeks. Our nanofiber-based long-term co-culture system is used as an important tool for the fundamental research of NMJs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm00720aDOI Listing

Publication Analysis

Top Keywords

co-culture system
12
electrospun nanofibers
8
neuromuscular junction
8
junction nmj
8
motor neurons
8
long-term maintenance
8
long-term co-culture
8
c2c12 cells
8
random aligned
8
pla nanofibrous
8

Similar Publications

Biomimetic Air-Lifted Organ Culture System with a Protective Coverage Membrane for Full-Thickness Corneal Preservation.

ACS Biomater Sci Eng

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Effective storage and utilization of limited donor corneal resources are in high demand to alleviate the shortage of donor corneal tissue. Here, we designed a static air-lifted organ culture system equipped with a protective coverage membrane, namely, an air-lifted OC-P system, to provide a biomimetic physiological environment for full-thickness corneal preservation. The air-lifted OC-P system features a unique collagen-based protective coverage membrane that can offer a moist, oxygen-rich environment for corneal epithelium, produce an appropriate intraocular pressure onto the cornea by gravity, and facilitate the maintenance of the organ culture medium level for nutrient supply during corneal preservation.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Antibody production is central to protection against new pathogens and cancers, as well as to certain forms of autoimmunity. Antibodies often originate in the lymph node (LN), specifically at the extrafollicular border of B cell follicles, where T and B lymphocytes physically interact to drive B cell maturation into antibody-secreting plasmablasts. In vitro models of this process are sorely needed to predict aspects of the human immune response.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Normal dermal mesenchymal stem cells improve the functions of psoriatic keratinocytes by inducing autophagy.

Acta Histochem

January 2025

Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China. Electronic address:

Objective: Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Although stem cell-based therapies have shown promise in treating psoriasis, the underlying mechanisms remain unclear. This study aimed to established a psoriatic cell model to investigate the effect of normal dermal mesenchymal stem cell (DMSCs) on keratinocyte proliferation, inflammation responses and the associated mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!