The over-expression of six-transmembrane epithelial antigen of the prostate 1 (STEAP1) underlies the pathogenesis of a large subset of human cancers. Expressed on the cancer cell surface, STEAP1 is an attractive target for antibody-based therapy or immunotherapy. However, its role in modulating the pathophysiology of colorectal cancer (CRC) remains relatively unexplored. In this study, we first demonstrated that the STEAP1 transcript level was significantly higher in CRC tissues than in normal colonic tissues. Of note, STEAP1 expression negatively correlated with overall survival as determined from a publicly accessible gene expression profile data set. A loss-of-function approach in cultured CRC cell lines revealed that STEAP1 silencing suppressed cell growth and increased reactive oxygen species (ROS) production, followed by apoptosis, through an intrinsic pathway. Mechanistically, the inhibition of STEAP1 was associated with decreased expression of antioxidant molecules regulated by the transcription factor, nuclear erythroid 2-related factor (NRF2), in CRC cells. Taken together, we identified high STEAP1 transcript levels leading to reduced ROS production that prevented apoptosis via the NRF2 pathway in CRC cells as a pathological mechanism in CRC. This study highlights the STEAP1-NRF2 axis as a therapeutic target for CRC and its manipulation as a novel strategy to conquer CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-018-0056-8DOI Listing

Publication Analysis

Top Keywords

six-transmembrane epithelial
8
epithelial antigen
8
antigen prostate
8
nuclear erythroid
8
erythroid 2-related
8
2-related factor
8
colorectal cancer
8
crc
8
steap1 transcript
8
ros production
8

Similar Publications

Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

February 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China. Electronic address:

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.

View Article and Find Full Text PDF

Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway.

Cancer Metab

December 2024

Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.

Article Synopsis
  • STEAP3 is a critical protein associated with cervical cancer (CC) progression, showing strong expression in CC tissues and linked to poor patient prognosis.
  • The study employed various methods, such as immunohistochemistry and RNA sequencing, to investigate STEAP3's role, revealing that lower methylation levels of STEAP3 are connected to worse outcomes.
  • Knockdown of STEAP3 in CC cells reduced their growth and invasion abilities while enhancing drug sensitivity, suggesting STEAP3 drives cancer cell activity through the activation of the JAK/STAT3 signaling pathway.
View Article and Find Full Text PDF

Six-transmembrane epithelial antigen of prostate 3 (STEAP3), a member of the iron regulation protein family, is characterized by a high recurrence rate and a short survival time. Nevertheless, studies investigating the role of STEAP3 in glioblastoma (GB) are scarce. In this study, the prognostic value of STEAP3 was evaluated utilizing mRNA expression profiles from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases as the validation and training cohorts, respectively.

View Article and Find Full Text PDF

Background: Abnormal expression of six-transmembrane epithelial antigen of prostate 4 (STEAP4) has been implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, the biological role and regulatory mechanisms of STEAP4 in HCC remain unclear.

Methods And Results: Here, we analyzed STEAP4 expression levels and differentially expressed genes (DEGs) between STEAP4 high- and low-expression groups using multiple databases.

View Article and Find Full Text PDF

TFAP2C-mediated transcriptional activation of STEAP3 promotes lung squamous cell carcinoma progression by regulating the β-catenin pathway.

Biol Direct

December 2024

Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, P. R. China.

Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is associated with the progression of several human malignancies. However, its role in lung squamous cell carcinoma (LUSC) remains unclear. We measured STEAP3 expression in LUSC cell lines and tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!