Gut bacterial β-D-glucuronidases (GUSs) catalyze the removal of glucuronic acid from liver-produced β-D-glucuronides. These reactions can have deleterious consequences when they reverse xenobiotic metabolism. The human gut contains hundreds of GUSs of variable sequences and structures. To understand how any particular bacterial GUS(s) contributes to global GUS activity and affects human health, the individual substrate preference(s) must be known. Herein, we report that representative GUSs vary in their ability to produce various xenobiotics from their respective glucuronides. To attempt to explain the distinct substrate preference, we solved the structure of a bacterial GUS complexed with coumarin-3-β-D-glucuronide. Comparisons of this structure with other GUS structures identified differences in loop 3 (or the α2-helix loop) and loop 5 at the aglycone-binding site, where differences in their conformations, hydrophobicities and flexibilities appear to underlie the distinct substrate preference(s) of the GUSs. Additional sequence, structural and functional analysis indicated that several groups of functionally related gut bacterial GUSs exist. Our results pinpoint opportunistic gut bacterial GUSs as those that cause xenobiotic-induced toxicity. We propose a structure-activity relationship that should allow both the prediction of the functional roles of GUSs and the design of selective inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219552 | PMC |
http://dx.doi.org/10.1038/s41598-018-34678-z | DOI Listing |
Vet Sci
November 2024
Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru.
This study evaluated the gut microbiota and meat quality traits in 11 healthy female cattle from the Huaral region of Peru, including 5 Angus, 3 Braunvieh, and 3 F1 Simmental × Braunvieh. All cattle were 18 months old and maintained on a consistent lifelong diet. Meat quality traits, including loin area, fat thickness, muscle depth, and marbling, were assessed in vivo using ultrasonography.
View Article and Find Full Text PDFMetabolites
December 2024
Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India.
The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system.
View Article and Find Full Text PDFMed Sci (Basel)
December 2024
Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India.
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases.
View Article and Find Full Text PDFCurr Res Microb Sci
November 2024
Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China.
The intestinal microbiota comprises approximately 10-10 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes.
View Article and Find Full Text PDFFront Microbiol
December 2024
First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!