The spectral properties of Fano resonance generated in multilayer dielectric gratings (MDGs) are reported and numerically investigated in this paper. We examine the MDG consisting of numerous identically alternative chalcogenide glass (AsS) and silica (SiO) multilayers with several grating widths inscribed through the structure, emphasizing quality (Q) and asymmetric (q) factors. Manipulation of Fano lineshape and its linear characteristics can be achieved by tailoring the layers' amount and grating widths so that the proposed structure can be applicable for several optical applications. Moreover, we demonstrate the switching/bistability behaviors of the MDG at Fano resonance which provide a significant switching intensity reduction compared to the established Lorentzian resonant structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219597 | PMC |
http://dx.doi.org/10.1038/s41598-018-34787-9 | DOI Listing |
Commun Mater
January 2025
Silicon Austria Labs GmbH, Graz, Austria.
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Tehran, Tehran, 14179-35840, Iran.
This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.
View Article and Find Full Text PDFIn this work, a specially designed multilayer indium tin oxide (ITO) mesh structure metasurface was proposed as a microwave absorber, achieving both excellent angle-insensitive broadband absorption and high shielding effectiveness (SE). It features gradually changing surface resistance ( ), to expand the absorption bandwidth while maintaining high SE. Also, a folded square ring metasurface was designed to effectively suppress surface wave grating lobes, as well as to reduce the unit size of the metasurface and thus the absorber.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
The dielectric properties of polymers play a pivotal role in the development of advanced materials for energy storage, electronics, and insulation. This review comprehensively explores the critical relationship between polymer chain conformation, nanostructure, and dielectric properties, focusing on parameters such as dielectric constant, dielectric loss, and dielectric breakdown strength. It highlights how factors like chain rigidity, free volume, molecular alignment, and interfacial effects significantly influence dielectric performance.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!