It has been postulated that in the liver, applying increased probe pressure during ultrasound-based shear wave elastography (SWE) might lead to a false increase in the SWE result. We aimed to determine the influence of increased intercostal probe pressure when performing SWE of the liver. We also investigated the number of measurements required to achieve technically successful and reliable SWE examinations. This prospective, clinical study included 112 patients and 2240 SWE measurements of the liver. We applied probe pressure intercostally, to reduce the skin-to-liver capsule distance (SCD), which could stabilize the SWE signal and thus increase the number of technically successful measurements. We performed 10 measurements with maximum probe pressure and 10 with normal pressure in each patient. Thus, two analysis groups were compared for differences. Compared with normal pressure, maximum probe pressure significantly reduced the SCD (p < 0.001) and significantly increased the number of technically successful measurements from 981 to 1098, respectively (p < 0.001). The SWE results with normal and maximum probe pressure were 5.96 kPa (interquartile range: 2.41) and 5.45 kPa (interquartile range: 1.96), respectively (p < 0.001). In obese patients, a large SCD poses a diagnostic challenge for ultrasound SWE. We found that maximum intercostal probe pressure could reduce the SCD and increase the number of technically successful measurements, without falsely increasing the SWE result. Only three measurements were required to achieve technically successful and reliable SWE examinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2018.09.023DOI Listing

Publication Analysis

Top Keywords

probe pressure
32
technically successful
20
number technically
12
successful measurements
12
maximum probe
12
pressure
10
swe
10
pressure ultrasound-based
8
ultrasound-based shear
8
shear wave
8

Similar Publications

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Design and commissioning of the PRIOR-II "proton microscope for FAIR".

Rev Sci Instrum

December 2024

Plasmaphysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany.

A new high energy proton radiography facility PRIOR-II (Proton Microscope for FAIR) has been designed, constructed, and successfully commissioned at the GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany) pushing the technical boundaries of charged particle radiography with normal conducting magnets to the limits. The setup is foreseen to become a new and powerful user facility for carrying out fundamental science experiments in the fields of plasma and shock wave physics, material science, and medical physics. It will help address several unsolved scientific challenges, which require high-speed and precise non-invasive diagnostic methods capable of probing matter with up to 100 g/cm2 areal density.

View Article and Find Full Text PDF

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

Adhesiveness of dermal patches can be modified in the presence of active substances. The effect is more complex when liquid components are also present in the matrix. Commercial grade pressure sensitive adhesive (PSA) polyacrylates (three types) and silicones (two types) were used to prepare adhesive matrices and liquid additives were propylene glycol, polyoxyethylene glycol, isopropyl myristate, triacetin, triethyl citrate or low viscosity silicone oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!