First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal.

Malar J

Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France.

Published: November 2018

Background: Until very recently, Anopheles were considered naturally unable to host Wolbachia, an intracellular bacterium regarded as a potential biological control tool. Their detection in field populations of Anopheles gambiae sensu lato, suggests that they may also be present in many more anopheline species than previously thought.

Results: Here, is reported the first discovery of natural Wolbachia infections in Anopheles funestus populations from Senegal, the second main malaria vector in Africa. Molecular phylogeny analysis based on the 16S rRNA gene revealed at least two Wolbachia genotypes which were named wAnfu-A and wAnfu-B, according to their close relatedness to the A and B supergroups. Furthermore, both wAnfu genotypes displayed high proximity with wAnga sequences previously described from the An. gambiae complex, with only few nucleotide differences. However, the low prevalence of infection, together with the difficulties encountered for detection, whatever method used, highlights the need to develop an effective and sensitive Wolbachia screening method dedicated to anopheline.

Conclusions: The discovery of natural Wolbachia infection in An. funestus, another major malaria vector, may overcome the main limitation of using a Wolbachia-based approach to control malaria through population suppression and/or replacement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219158PMC
http://dx.doi.org/10.1186/s12936-018-2559-zDOI Listing

Publication Analysis

Top Keywords

natural wolbachia
12
wolbachia infection
8
anopheles funestus
8
discovery natural
8
malaria vector
8
wolbachia
6
report natural
4
infection wild
4
anopheles
4
wild anopheles
4

Similar Publications

Background: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions.

Results: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region.

View Article and Find Full Text PDF

The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.

View Article and Find Full Text PDF

Counting rare endosymbionts using digital droplet PCR.

bioRxiv

December 2024

Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.

is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, is at the vanguard of public health initiatives to control mosquito-borne diseases. 's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues.

View Article and Find Full Text PDF

Background: Culex tritaeniorhynchus, a major vector of Japanese encephalitis virus (JEV), is found across a broad geographical range, including Africa, Asia, Australia and Europe. Understanding the population structure and genetic diversity of pathogen vectors is increasingly seen as important for effective disease control. In China and Japan, two countries in close proximity to the Republic of Korea (ROK), Cx.

View Article and Find Full Text PDF

Interaction of the surface protein with a novel pro-viral protein from .

mBio

January 2025

Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.

Unlabelled: Dengue virus (DENV) and other flaviviruses are prevented from replicating in mosquitoes by . To date, several reports have appeared that highlight multiple molecular and cellular pathways involved in the blocking mechanism, which underlines the complicated nature of the mechanism. Here, we developed a hypothesis on whether proteins interact with pro-viral host proteins by using a unique approach to study the antiviral mechanism based on -host protein-protein interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!