Background: Cellular treatments using mesenchymal stem cells (MSCs) cultured in 3D conditions constitute a solution to the classical surgery in treating abdominal aortic aneurysm (AAA). The recurrent question is: how this type of biotherapy changes the mechanical behavior of artery?
Methods: Experiments measurements based on xenograft rat model showed that the proposed cellular treatment leads to a decreasing radius and length of the AAA during its growth. An inverse finite element method was used to investigate the mechanical hyperelastic behavior of the AAA in the untreated case compared to the treated one.
Results: Although AAA leads a loss anisotropy while the cellular treatment does not restore it, it was shown that the stiffness of the arterial wall was improved. The numerical analysis of the stress distributions permitted to localize the stress concentration through the arterial wall and the probable zone of the rupture of the aneurysm developed from the xenograft rat model.
Conclusions: The treatment of AAA with MSCs cultured in a 3D conditions constitutes a new challenge. Based on xenograft rat model, this study shows the potential of this cellular treatment to reduce the variation of the growth, the stiffness and the stress distributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BME-181014 | DOI Listing |
AME Case Rep
December 2024
Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China.
Background: Gastric cancer (GC) is one of the leading contributors to global malignancies incidence and mortality worldwide. Advanced GC had a relatively poor prognosis. The emerging of targeted therapy improved the survival and prognosis of GC patients.
View Article and Find Full Text PDFBioorg Chem
January 2025
Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
In this study, we reported the discovery of a novel type II c-Met/Axl inhibitor, characterized by using 4-amino-7H-pyrrolo[2,3-d]pyrimidine as a hinge region binder. Through a systematic exploration of the structure-activity relationship, based on the clinically reported c-Met inhibitor BMS-777607, we identified the optimized compound 22a. 22a exhibited remarkable potency against c-Met and Axl kinases, with IC values of 1 nM and 10 nM, respectively, and demonstrated over 100-fold selectivity to other members of the TAM subfamily.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Cancer heterogeneity, characterized by diverse populations of tumorigenic cells, involves the occurrence of differential phenotypes with variable expressions of receptor tyrosine kinases. Aberrant expressions of mesenchymal-epithelial transition (MET) and recepteur d'origine nantais (RON) receptors contribute to the phenotypic heterogeneity of cancer cells, which poses a major therapeutic challenge. This study aims to develop a dual-targeting antibody-drug conjugate (ADC) that can act against both MET and RON for treating cancers with high phenotypic heterogeneity.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum, Turkey.
Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil.
Objective: This study aimed to assess the effects of a single-dose radiation therapy (15 Gy) on grafted and non-grafted defects, bone microarchitecture, and collagen maturity.
Methodology: Bone defects were surgically created in rat femurs. The right femur defect was filled with blood clot (group "Clot") and the left femur defect by deproteinized bovine bone mineral graft (group "Xenograft").
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!