A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving the performance of empirical mode decomposition via Tsallis entropy: Application to Alzheimer EEG analysis. | LitMetric

Alzheimer is a degenerative disorder that attacks neurons, resulting in loss of memory, thinking, language skills, and behavioral changes. Computer-aided detection methods can uncover crucial information recorded by electroencephalograms. A systematic literature search presents the wavelet transform as a frequently used technique in Alzheimer's detection. However, it requires a defined basis function considered a significant problem. In this work, the concept of empirical mode decomposition is introduced as an alternative to process Alzheimer signals. The performance of empirical mode decomposition heavily relies on a parameter called threshold. In our previous works, we found that the existing thresholding techniques were not able to highlight relevant information. The use of Tsallis entropy as a thresholder is evaluated through the combination of empirical mode decomposition and neural networks. Thanks to the extraction of better features that boost the classification accuracy, the proposed approach outperforms the state-of-the-art in terms of peak signal to noise ratio and root mean square error. Hence, our methodology is more likely to succeed than methods based on other landmarks such as Bayes, Normal and Visu shrink. We finally report an accuracy rate of 80%, while the aforementioned techniques only yield performances of 65%, 60% and 40%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-181008DOI Listing

Publication Analysis

Top Keywords

empirical mode
16
mode decomposition
16
performance empirical
8
tsallis entropy
8
improving performance
4
empirical
4
mode
4
decomposition
4
decomposition tsallis
4
entropy application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!