Insights into the mechanisms by which key factors stimulate cell growth under androgen-depleted conditions is a premise to the development of effective treatments with clinically significant activity in patients with castration-resistant prostate cancer (CRPC). Herein, we report that, the expression of Krüppel-like factor 14 (KLF14), a master transcription factor in the regulation of lipid metabolism, was significantly induced in castration-insensitive PCa cells and tumor tissues from a mouse xenograft model of CRPC. KLF14 upregulation in PCa cells, which was stimulated upstream by oxidative stress, was dependent on multiple pathways including PI3K/AKT, p42/p44 MAPK, AMPK and PKC pathways. By means of ectopic overexpression and genetic inactivation, we further show that KLF14 promoted cell growth via positive regulation of the antioxidant response under androgen-depleted conditions. Mechanistically, KLF14 coupled to p300 and CBP to enhance the transcriptional activation of HMOX1, the gene encoding the antioxidative enzyme heme oxygenase-1 (HO-1) that is one of the most important mechanisms of cell adaptation to stress. Transient knockdown of HMOX1 is sufficient to overcome KLF14 overexpression-potentiated PCa cell growth under androgen-depleted conditions. From a pharmacological standpoint, in vivo administration of ZnPPIX (a specific inhibitor of HO-1) effectively attenuates castration-resistant progression in the mouse xenograft model, without changing KLF14 level. Together, these results provide comprehensive insight into the KLF14-dependent regulation of antioxidant response and subsequent pathogenesis of castration resistance and indicate that interventions targeting the KLF14/HO-1 adaptive mechanism should be further explored for CRPC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/ERC-18-0383 | DOI Listing |
Adv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!