A 526.5 nm Thomson scattering diagnostic laser enables probing of the plasma conditions of neon gas-puff z-pinch implosions with temporal resolution. Splitting the laser into two 2.5 J pulses, both 2.3 ns in duration and separated by 4 ns, allows observation of sub-nanosecond time-resolved spectra for a total time of 7 ns. Collection optics were set at 90° and 30° to the laser, observing the same on-axis scattering volume with a radial extent of 0.4 mm. The spectra from both angles were collected by using the same streak camera, using a coupling system that allowed us to obtain temporal, spectral, and angular resolution in the same image. By comparing the ion-acoustic spectra from the two angles, we determined electron temperature and a range of possible electron densities. Measurements made in the 1-3 ns period before pinch time show best fit (determined by a least-squares method) electron densities of around 2 × 10 cm, increasing to 1.5 × 10 cm in the 3 ns following the start of the x-ray burst ( = 0 ns) from the pinch. The electron temperature increases from 300 eV to 500 eV at = 0 ns before decreasing to below 300 eV after pinch time. With the present parameters (probe beam, collection angles, and electron temperature and density), this diagnostic method is too insensitive to electron density to provide more than a constraint on that parameter. Plasma regimes in which this technique could determine electron density with some precision are calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5038879DOI Listing

Publication Analysis

Top Keywords

pinch time
12
electron temperature
12
thomson scattering
8
gas-puff z-pinch
8
spectra angles
8
electron densities
8
electron density
8
electron
7
time-resolved multiple-angle
4
multiple-angle thomson
4

Similar Publications

Unraveling EEG correlates of unimanual finger movements: insights from non-repetitive flexion and extension tasks.

J Neuroeng Rehabil

December 2024

Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.

Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.

View Article and Find Full Text PDF

Purpose: The management of idiopathic macular holes (iMH) has evolved over time with various modifications in surgical approach. The study aimed to survey the surgeons' preferences in the management of iMH in current times.

Design: Cross-sectional descriptive survey.

View Article and Find Full Text PDF

Objectives: Repeated gripping with high grip forces and high rates of grip force development are risk factors for carpal tunnel syndrome. As the nerve's adaptive ability is crucial to prevent disease progression, we investigated how these risk factors influence median nerve deformation and displacement over the time course of a repeated pinch grip task.

Methods: Seventeen healthy participants performed a repeated grip task against a load cell while their carpal tunnel was scanned with ultrasound.

View Article and Find Full Text PDF

Despite the widespread use of older adults (OA) as controls in movement disorder studies, the specific effects of aging on the neural control of upper and lower limb movements remain unclear. While functional MRI paradigms focusing on hand movements are widely used to investigate age-related brain changes, research on lower limb movements is limited due to technical challenges in an MRI environment. This study addressed this gap by examining both upper and lower limb movements in healthy young adults (YA) vs.

View Article and Find Full Text PDF

Aims: In the treatment of basal thumb osteoarthritis (OA), intra-articular autologous fat transplantation has become of great interest within recent years as a minimally invasive and effective alternative to surgical intervention with regard to pain reduction. This study aims to assess its long-term effectiveness.

Methods: Patients diagnosed with stage one to three OA received a single intra-articular autologous fat transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!