A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

X-ray streaked refraction enhanced radiography for inferring inflight density gradients in ICF capsule implosions. | LitMetric

X-ray streaked refraction enhanced radiography for inferring inflight density gradients in ICF capsule implosions.

Rev Sci Instrum

Nevada National Security Site, 161 S. Vasco Road Livermore, California 94551, USA.

Published: October 2018

In the quest for reaching ignition of deuterium-tritium (DT) fuel capsule implosions, experiments on the National Ignition Facility (NIF) have shown lower final fuel areal densities than simulated. Possible explanations for reduced compression are higher preheat that can increase the ablator-DT ice density jump and induce mix at that interface or reverberating shocks. We are hence developing x-ray Refraction Enhanced Radiography (RER) to infer the inflight density profiles in layered fuel capsule implosions. We use a 5 m slit backlit by a Ni 7.8 keV He-α NIF laser driven x-ray source positioned at 20 mm from the capsule to cast refracted images of the inflight capsule onto a streak camera in a high magnification (M ∼ 60×) setup. Our first experiments have validated our setup that recorded a streaked x-ray fringe pattern from an undriven high density carbon (HDC) capsule consistent with ray tracing calculations at the required ∼6 m and 25 ps resolution. Streaked RER was then applied to inflight layered HDC capsule implosions using a hydrogen-tritium fuel mix rather than DT to reduce neutron yields and associated backgrounds. The first RER of an imploding capsule revealed strong features associated with the ablation front and ice-ablator interface that are not visible in standard absorption radiographs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5039346DOI Listing

Publication Analysis

Top Keywords

capsule implosions
16
refraction enhanced
8
enhanced radiography
8
inflight density
8
capsule
8
fuel capsule
8
hdc capsule
8
x-ray
4
x-ray streaked
4
streaked refraction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!