A new capability at the National Ignition Facility (NIF) has been implemented to measure the temperature of x-ray emitting sources. Although it is designed primarily for Inertial Confinement Fusion (ICF), it can be used for any hot emitting source that is well modeled. The electron temperature (T) of the hot spot within the core of imploded ICF capsules is an effective indicator of implosion performance. Currently, there are spatially and temporally integrated T inferences using image plates. A temporally resolved measurement of T will help elucidate the mechanisms for hot spot heating and cooling such as conduction to fuel, alpha-heating, mix, and radiative losses. To determine the temporally resolved T of hot spots, specific filters are added to an existing x-ray streak camera "streaked polar instrumentation for diagnosing energetic radiation" to probe the emission spectrum during the x-ray burn history of implosions at the NIF. One of the difficulties in inferring the hot spot temperature is the attenuation of the emission due to opacity from the shell and fuel. Therefore, a series of increasingly thick titanium filters were implemented to isolate the emission in specific energy regions that are sensitive to temperatures above 3 keV while not significantly influenced by the shell/fuel attenuation. Additionally, a relatively thin zinc filter was used to measure the contribution of colder emission sources. Since the signal levels of the emission through the thicker filters are relatively poor, a dual slit (aperture) was designed to increase the detected signal at the higher end of the spectrum. Herein, the design of the filters and slit is described, an overview of the solving technique is provided, and the initial electron temperature results are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5039382DOI Listing

Publication Analysis

Top Keywords

electron temperature
12
hot spot
12
streak camera
8
temporally resolved
8
temperature
5
hot
5
emission
5
implementing time
4
time resolved
4
resolved electron
4

Similar Publications

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".

View Article and Find Full Text PDF

Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!