Accurate magnetic measurements in radio frequency capacitively coupled plasmas (CCP) are challenging due to the presence of inherently strong electric fields and relatively weak magnetic fields. In this work, a new B-dot probe circuit is presented, comprising two variable capacitors in a tunable series resonance circuit, with a center-tapped, step-up transformer. The output characteristics of the probe are predicted using two distinct equivalent circuit models, one for the differential mode and the other for the common mode. A Helmholtz coil and a Faraday cup are used for experimental validation of the predicted probe output. By tuning the two variable capacitors in the circuit, the magnetic probe can achieve improved signal-to-noise ratio by amplifying the inductive signal, while suppressing capacitive coupling interference. Using the newly designed probe, magnetic measurements in typical CCP are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5041814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!