Dev Neurosci
Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA.
Published: March 2019
Neuroprotective cold-shock proteins (CSPs) are abundant in the normothermic neonatal rodent brain but decrease with advancing neurodevelopmental age and are low or absent in the adult brain. It has not been established if neurodevelopmental age alters the baseline expression of CSPs in the human brain. Here, we tested the hypothesis that protein levels of RNA-binding motif 3 (RBM3), reticulon-3 (RTN3), and cold-induced RNA-binding protein (CIRBP) are abundant in the normothermic developing human brain but low-to-absent in adults. We also tested if β-klotho (KLB) is expressed in the developing brain; KLB functions as a coreceptor that controls tissue-specific binding and activity of the systemically circulating thermogenic hormone fibroblast growth factor 21 (FGF21), and is predominantly expressed in the liver, pancreas, and in adipose cells. Methods: Hippocampi and anterior prefrontal cortices (aPFCs/BA10) from a total of 20 male and 20 female subjects were obtained from the NIH NeuroBioBank. CSP and KLB levels were measured in: infants < 1 year old (n = 8), toddlers aged 1-2 years (n = 8), children aged 3-5 years (n = 7), 18-year-old adolescents (n = 8), and adults aged 31-34 years (n = 8). An equal number of male and female (n = 4 each) samples were pooled into each age group, except in the 3- to 5-year-olds which comprised 3 male and 4 female specimens due to sample availability. In total, 78 whole-brain tissues were dissociated using a bead-based Precellys homogenizer to generate equivalent homogenates, and levels of protein targets subsequently analyzed by Western blotting. Results: Infants had the highest levels of RBM3 and other CSPs in the brain compared to all other ages. In the hippocampus, CSPs were detected predominantly in infants. In the aPFC, CSP levels were highest in infants, moderate-to-low in toddlers/children, and below assay detection limits in adolescents/adults. Germane to the thermogenic FGF21/KLB signaling axis, our results confirm that KLB is absent in the adult hippocampus/aPFC as reported by others. In contrast, we report for the first time that KLB is abundant in the early developing human brain; KLB levels were highest in the infant hippocampus/aPFC and moderately expressed in toddlers. RBM3 is a potent neuroprotective CSP. Thus, the impact of these findings on the observed efficacy of therapeutic hypothermia in neonatal brain injury merits further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311128 | PMC |
http://dx.doi.org/10.1159/000493637 | DOI Listing |
Neurocrit Care
January 2025
Division of Neurocritical Care, Departments of Neurology and Neurosurgery, New York University Langone Medical Center, 530 First Avenue, MSB-2-206, New York, NY, 10016, USA.
Background: The Uniform Determination of Death Act requires brain death/death by neurologic criteria (BD/DNC) determination to be in accordance with "accepted medical standards." The medical organizations responsible for delineating these guidelines are only specified statutorily in two states. State health organizations (SHOs) are composed of policy experts and medical professionals who are responsible for addressing medical, ethical, and legislative problems related to health.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Section of Adult Neurology, Department of Internal Medicine, Chong Hua Hospital, Fuente, Cebu, Philippines.
Joubert Syndrome (JS) is a congenital cerebellar ataxia typically inherited in an autosomal recessive pattern, although rare X-linked inheritance can occur. It is characterized by hypotonia evolving into ataxia, global developmental delay, oculomotor apraxia, breathing dysregulation, and multiorgan involvement. To date, there are 40 causative genes implicated in JS, all of which encode proteins of the primary cilium.
View Article and Find Full Text PDFJ Neurol
January 2025
Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
Background: Conventional medical management, while essential, cannot address all multifaceted consequences of Parkinson's disease (PD). This pilot study explores the potential of a co-designed creative arts therapy on health-related quality of life, well-being, and pertinent non-motor symptoms.
Methods: We conducted an exploratory pilot study with a pre-post design using validated questionnaires.
Eur J Nucl Med Mol Imaging
January 2025
Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Purpose: As dual-phase amyloid-PET can evaluate amyloid (A) and neurodegeneration (N) with a single tracer injection, dual-phase tau-PET might be able to provide both tau (T) and N. Our study aims to assess the association of early-phase tau-PET scans and F-fluorodeoxyglucose (FDG) PET and their comparability in discriminating Alzheimer's disease (AD) patients and differentiating neurodegenerative patterns.
Methods: 58 subjects evaluated at the Geneva Memory Center underwent dual-phase F-Flortaucipir-PET with early-phase acquisition (eTAU) and F-FDG-PET within 1 year.
Nat Methods
January 2025
Department of Computer Science, Princeton University, Princeton, NJ, USA.
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a quantity called the isodepth. Contours of constant isodepths enclose domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.