Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lidocaine is a voltage-gated Na channel blocker, commonly used as a fast-acting local and general anesthetic. Lidocaine also has central action, affecting behavior both clinically and in animal models. Adult zebrafish are rapidly becoming a critical novel model organism in translational neuroscience research. Here, we examine the effects of acute peripheral (lateral line application, 4%) and systemic (water immersion, 1, 5 and 10 mg/L) administration of lidocaine on adult zebrafish behavior tested in the novel tank test. Overall, the drug evoked hypolocomotor effect when applied systemically (at 10 mg/L) and peripherally. Peripheral lidocaine also reduced top exploration in the novel tank test (vs. sham), suggesting anxiogenic-like effect of the lateral line blockage, Our findings show the importance of the lateral line system in driving adult zebrafish locomotion, and suggest sedative-like effects of systemic lidocaine in aduld zebrafish. In addition, reflecting the role of central cholinergic contribution in lidocaine action, brain acetylcholinesterase (AChE) activity was lower following peripheral and systemic administration of lidocaine at behaviorally active doses. Collectively, our data support the effects of lidocaine on behavioral responses in zebrafish, and reinforce the growing utility of this aquatic model to screen various CNS drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2018.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!