Amanitin-induced apoptosis is proposed to have a significant effect on the pathogenesis of liver damage. However, few reports have focused on proteome changes induced by α-amanitin (α-AMA). Here, we evaluated changes in mitochondrial proteins of hepatocytes in response to 2 μM α-AMA, a concentration at which α-AMA-induced cell damage could be rescued at cellular level by common clinical drugs. We found 56 proteins were differentially expressed in an α-AMA-treated group. Among them, 38 proteins were downregulated and 18 were upregulated. Downregulated functional proteins included importer TOMM40, respiratory chain component cytochrome C, and metabolic enzymes of citrate acid cycle such as malate dehydrogenase, which localize on the mitochondrial outer membrane, inner membrane and matrix respectively. Immunoblot analysis showed that α-AMA decreased mitochondrial import receptor subunit TOMM40 and cytochrome c accompanied by an increase in the cytosol although their total protein levels were not affected significantly. The mitochondrial membrane potential was also destroyed by α-AMA and was restored by the clinical drug silibinin. Immunofluorescence suggested that mitochondrial morphology did not change. Taken together, our results provide further insights into the toxic mechanism of α-AMA on hepatocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2018.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!