Two processes for crosslinking polyvinyl alcohol (PVA) with sulfosuccinic acid (SSA) and thermal crosslinking were used to fabricate a proton exchange membrane (PEM). Such PEMs are used in different fields involving fuel cell applications. The crosslinking reaction between PVA and SSA was confirmed using Fourier-transform infrared (FTIR) spectroscopy. The characterization of the prepared membranes, namely, ion exchange capacity (IEC), thermal analyses, water uptake, and ionic conductivity, was carried out. The IEC of the prepared membranes was found to be between 0.084 and 2.086 mmol g-1, resulting in an essential increase in the ionic conductivity. It was observed that the ionic conductivity was in the range of 0.003-0.023 S cm-1, depending on both temperature and SSA content. From the thermogravimetric analysis (TGA) results, it was revealed that the thermal stability of the crosslinked membranes improved. Moreover, water uptake decreased with increasing SSA content. Positron annihilation lifetime spectroscopy (PALS) was used to study the microstructure of the PVA/SSA membranes and their distribution at different ambient temperatures and relative humidity (RH) values. At room temperature, no significant change was observed in the free-volume holes up to 15 wt% SSA; thereafter, the size of the free-volume holes increased with the SSA content. The PALS results show that at different humidity values, the size of the free-volume holes for crosslinked PVA/SSA membranes is lower than those for Nafion membranes, i.e., the gas permeability for the prepared PVA/SSA membranes is less than that for the Nafion membrane. In addition, a strong correlation between the water uptake, ionic conductivity, tensile strength, and free-volume holes was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp05301dDOI Listing

Publication Analysis

Top Keywords

ionic conductivity
16
free-volume holes
16
water uptake
12
ssa content
12
pva/ssa membranes
12
crosslinked pva/ssa
8
proton exchange
8
membranes
8
positron annihilation
8
prepared membranes
8

Similar Publications

The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.

View Article and Find Full Text PDF

Pentafluoroorthotellurate Uncovered: Theoretical Perspectives on an Extremely Electronegative Group.

Inorg Chem

January 2025

Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain.

Article Synopsis
  • The pentafluoroorthotellurate group (-OTeF, teflate) is a potent electron-withdrawing substitute for fluoride, known for its stability and size, which helps avoid bridging ligand behavior.
  • This study employs advanced Quantum Chemical Topology methods to analyze the electronic structure and bonding of the teflate group, comparing its electronegativity with halogens and investigating the interactions in various XOTeF systems.
  • Findings reveal that while teflate exhibits strong electron-withdrawing abilities akin to fluorine, its bonding is predominantly ionic and shares similar electronegativity traits with other O-donor groups.
View Article and Find Full Text PDF

High-Rate 4.2 V Solid-State Potassium Batteries by In Situ Polymerized Epoxide Ether Electrolyte.

Nano Lett

January 2025

College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.

Article Synopsis
  • Solid-state metallic potassium batteries (SSMPBs) are gaining attention as alternatives to lithium batteries, but face challenges like low ionic conductivity and high interfacial resistance.
  • Researchers achieved improved performance by using in situ ring-opening polymerization with a plasticizer and catalyst, resulting in short-chain polyether electrolytes that significantly enhance ionic conductivity.
  • The developed SSMPBs show a high discharge capacity of 69 mAh/g at 100 mA/g and 88.8% capacity retention after 100 cycles, outperforming previous SSMPB studies.
View Article and Find Full Text PDF
Article Synopsis
  • Enhancing transport and mechanical properties in cathode composites is essential for solid-state battery performance.
  • The FAST electrode features vertically aligned carbon nanotubes in a polymer electrolyte, improving ionic and electronic conductivity while reinforcing the electrode.
  • This innovative design leads to excellent electrochemical performance, achieving a capacity of 148.2 mAh/g at 0.2 C over 100 cycles, indicating progress in solid-state lithium metal battery technology.
View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!