Spinel ferrites (T[M1-xFex]O[MxFe2-x]O4 with 0 ≤ x ≤ 1, where M is a bivalent metal ion and the superscripts denote tetrahedral and octahedral sites) are materials commonly used in electronics due to their outstanding magnetic properties. Thus, the effect of the degree of inversion, x, on these properties is well known. However, its effect on other properties of these materials has rarely been investigated in detail. Since ferrites gained much attention during the last decade as visible light active photocatalysts and photoelectrocatalysts, understanding the effect of the degree of inversion on the optical properties became necessary. Among photocatalytically and photoelectrocatalytically active spinel ferrites, zinc ferrite (ZnFe2O4, ZFO) is one of the most widely studied materials. In this work, five ZFO samples with degrees of inversion varying from 0.07 to 0.20 were prepared by a solid-state reaction employing different annealing temperatures and subsequent quenching. Raman and UV-Vis-NIR spectra were measured and analyzed together with theoretical results obtained from ab initio calculations. Changes in the UV-Vis-NIR spectra associated with electronic transitions of tetrahedrally and octahedrally coordinated Fe3+ ions are distinguished. However, the optical band gap of the material remains unchanged as the degree of inversion varies. Based on the experimental and theoretical results, a new assignment for the Raman active internal modes and the electronic transitions of ZFO is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp05061a | DOI Listing |
Zhonghua Xin Xue Guan Bing Za Zhi
January 2025
Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian116021, China.
To assess the effectiveness of transcatheter aortic valve replacement (TAVR) on electrocardiographic remodeling in patients with severe aortic stenosis (AS), and identify its influencing factors. A cohort study was conducted on patients with a confirmed diagnosis of severe AS who successfully underwent TAVR at the Second Affiliated Hospital of Dalian Medical University between June 2018 and March 2023. Data, including standard 15-lead electrocardiograms and echocardiograms, were collected before the operation, 1 week after the operation, and 3 months after the operation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, School of Chemical Engineering and Technology, Yaguan Road #135, Jinnan District, Tianjin 300354, P. R. China, CHINA.
In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA, Chicago, 60637, UNITED STATES.
Objective: Accurate image reconstruction from data with truncation in X-ray computed tomography (CT) remains a topic of research interest; and the works reported previously in the literature focus largely on reconstructing an image only within the scanning field-of-view (FOV). We develop algorithms to invert the data model with truncation for accurate image reconstruction within the entire subject support or a region slightly smaller than the subject support.
Methods: We formulate image reconstruction from data with truncation as an optimization program, which includes hybrid constraints on image total variation (TV) and image L1-norm for effectively suppressing truncation artifacts.
Phys Rev Lett
December 2024
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
SEB Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.
White matter hyperintensities (WMH) of presumed vascular origin are a magnetic resonance imaging (MRI)-based biomarker of cerebral small vessel disease (CSVD). WMH are associated with cognitive decline and increased risk of stroke and dementia, and are commonly observed in aging, vascular cognitive impairment, and neurodegenerative diseases. The reliable and rapid measurement of WMH in large-scale multisite clinical studies with heterogeneous patient populations remains challenging, where the diversity of imaging characteristics across studies adds additional complexity to this task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!