Galanin-like peptide (GALP) is composed of 60 amino acid residues and its sequence is highly homologous across species. GALP is produced in the hypothalamic arcuate nucleus and has diverse physiological effects such as the regulation of feeding, energy metabolism, and reproductive behavior. GALP-containing neurons express leptin receptors and these neurons form networks in the hypothalamus that contain various peptides that regulate feeding behavior. Recent studies have revealed that GALP has a central anti-obesity action in addition to its role in food intake regulation. Furthermore, we have found that the respiratory quotient declines shortly after administration of GALP into the lateral ventricle. This suggests that lipid metabolism is accelerated by GALP administration, and identifies a new physiological action for this peptide. In this review article, we summarize our recent research focusing on the mechanism whereby GALP regulates feeding and energy metabolism. We concentrate on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system and outline the effectiveness of the nasal administration of GALP and basic research towards its clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612824666181106111623 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Mitodicure GmbH, Kriftel, Germany.
Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.
View Article and Find Full Text PDFCurr Res Microb Sci
November 2024
Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China.
The intestinal microbiota comprises approximately 10-10 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Introduction: Patients with acute myocardial infarction (AMI) are at high risk of progressing to heart failure (HF). Recent research has shown that lipid droplet-related genes (LDRGs) play a crucial role in myocardial metabolism following MI, thereby influencing the progression to HF.
Methods: Weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were used to screen a transcriptome dataset of whole blood cells from AMI patients with (AMI HF, = 16) and without progression (AMI no-HF, = 16).
Front Nutr
December 2024
Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.
View Article and Find Full Text PDFJ Med Chem
December 2024
Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!