There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(CO)(HO)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-018-0206-2DOI Listing

Publication Analysis

Top Keywords

rigid metal-organic
8
metal-organic framework
8
molecular sieving
4
sieving ethylene
4
ethylene ethane
4
rigid
4
ethane rigid
4
framework great
4
great challenges
4
challenges developing
4

Similar Publications

Recent Advances in Metal-Organic Framework-Based Anticancer Hydrogels.

Gels

January 2025

Exigo Recycling Pvt Ltd., Karnal 132114, Haryana, India.

Cancer is the second leading cause of death globally and the estimated number of new cancer cases and deaths will be ∼30.2 million and 16.3 million, respectively, by 2040.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.

View Article and Find Full Text PDF

A wide range of mesoporous Zr and Hf metal-organic frameworks (MOFs), namely MIP-206, MOF-808, and NU-1000, as well as the microporous UiO-66, were systematically investigated and compared in terms of thermal and chemical stability. The holistic effects of metal type (Zr Hf), linker type (small and rigid large and flexible), and framework topology (2D 3D) on the overall framework stability were investigated.

View Article and Find Full Text PDF

Polysaccharides-Directed Biomineralization of Enzymes in Hierarchical Zeolite Imidazolate Frameworks for Electrochemical Detection of Phenols.

ACS Appl Mater Interfaces

January 2025

Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.

Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.

View Article and Find Full Text PDF

Boosting One- and Two-Photon Excited Fluorescence of Interpenetrated Tetraphenylethene-Based Metal-Organic Frameworks (TPE-MOFs) by Linker Installation.

Angew Chem Int Ed Engl

January 2025

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.

Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!