There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(CO)(HO)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-018-0206-2 | DOI Listing |
Gels
January 2025
Exigo Recycling Pvt Ltd., Karnal 132114, Haryana, India.
Cancer is the second leading cause of death globally and the estimated number of new cancer cases and deaths will be ∼30.2 million and 16.3 million, respectively, by 2040.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China. Electronic address:
Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain.
A wide range of mesoporous Zr and Hf metal-organic frameworks (MOFs), namely MIP-206, MOF-808, and NU-1000, as well as the microporous UiO-66, were systematically investigated and compared in terms of thermal and chemical stability. The holistic effects of metal type (Zr Hf), linker type (small and rigid large and flexible), and framework topology (2D 3D) on the overall framework stability were investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.
Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!