A small number of high-burden countries account for the majority of tuberculosis cases worldwide. Detailed data are lacking from these regions. To explore the evolutionary history of Mycobacterium tuberculosis in China-the country with the third highest tuberculosis burden-we analysed a countrywide collection of 4,578 isolates. Little genetic diversity was detected, with 99.4% of the bacterial population belonging to lineage 2 and three sublineages of lineage 4. The deeply rooted phylogenetic positions and geographic restriction of these four genotypes indicate that their populations expanded in situ following a small number of introductions to China. Coalescent analyses suggest that these bacterial subpopulations emerged in China around 1,000 years ago, and expanded in parallel from the twelfth century onwards, and that the whole population peaked in the late eighteenth century. More recently, sublineage L2.3, which is indigenous to China and exhibited relatively high transmissibility and extensive global dissemination, came to dominate the population dynamics of M. tuberculosis in China. Our results indicate that historical expansion of four M. tuberculosis strains shaped the current tuberculosis epidemic in China, and highlight the long-term genetic continuity of the indigenous M. tuberculosis population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295914 | PMC |
http://dx.doi.org/10.1038/s41559-018-0680-6 | DOI Listing |
EClinicalMedicine
January 2025
Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Western Cape, South Africa.
This systematic review evaluated the effectiveness of community-wide screening for pulmonary tuberculosis (TB) in high-burden areas by analysing randomised controlled trials (RCTs). The review focused on interventions offering TB screening to entire communities, comparing them to standard care or alternative approaches. The main outcome assessed was microbiologically confirmed TB diagnoses, including rates and prevalence.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.
Background: Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.
Methods: To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals.
BMC Musculoskelet Disord
January 2025
Department of Joint Surgery, The Second Hospital of Jilin University, Changchun, 130,000, Jilin Province, China.
Objectives: Tuberculosis of the hip joint is a common form of bone tuberculosis that can cause severe joint destruction and affect quality of life. Total hip arthroplasty (THA) is an important way to treat hip joint-related diseases. In recent years, THA has been applied to treat tuberculosis of the hip joint and has achieved certain results.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
Background: C-reactive protein (CRP) is one of the most commonly monitored inflammatory markers in patients with COVID-19 to gain insight into the inflammation level in the body and to adopt effective disease management and therapeutic strategies. COVID-19 is now less prevalent, and the study of CRP as a biomarker of inflammation still needs deeper understanding, particularly in understanding its role among patients with comorbidities, which are known to influence inflammatory responses and increase the risk of severe outcomes during acute and chronic infectious diseases. The objective of this study was to evaluate the association of major comorbidities such as ischemic heart diseases, diabetes, chronic kidney disease, hypertension, and lung infections e.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.
In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!