serovar Enteritidis is a common cause of foodborne illness in the United States. The bacterium can be transmitted to humans via contaminated chicken meat and eggs, and virulence in humans requires type III secretion system 1 (TTSS-1), encoded on pathogenicity island 1 (SPI-1). Chickens often carry Enteritidis subclinically, obscuring the role of SPI-1 in facilitating bacterial colonization. To evaluate the role of SPI-1 in the infection of chicks by , we created and utilized strains harboring a stable fluorescent reporter fusion designed to quantify SPI-1 expression within the intestinal tracts of animals. Using mutants unable to express TTSS-1, we demonstrated the important role of the secretion system in facilitating bacterial colonization. We further showed that coinoculation of an SPI-1 mutant with the wild-type strain increased the number of mutant organisms in intestinal tissue and contents, suggesting that the wild type rescues the mutant. Our results support the hypothesis that SPI-1 facilitates Enteritidis colonization of the chicken and make SPI-1 an attractive target in preventing carriage and colonization in chickens to reduce contamination of poultry meat and eggs by this foodborne pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300634 | PMC |
http://dx.doi.org/10.1128/IAI.00503-18 | DOI Listing |
Int J Food Microbiol
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Int J Mol Sci
December 2024
Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain.
Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.
View Article and Find Full Text PDFYi Chuan
January 2025
Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
Over the past decade, the continuous development of ancient genomic technology and research has significantly advanced our understanding of human history. Since 2017, large-scale studies of ancient human genomes in East Asia, particularly in China, have emerged, resulting in a wealth of ancient genomic data from various time periods and locations, which has provided new insights into the genetic history of East Asian populations over tens of thousands of years. Especially since 2022, there emerged a series of new research progresses in the genetic histories of the northern and southern Chinese populations within the past 10,000 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!