Since the discovery of molecular hydrogen (H) as a selective scavenger of free radicals like reactive oxygen species (ROS) and reactive nitrogen species (RNS), numerous studies have proved the potential application of H in therapeutic and preventative medicine. Moreover, H can regulate the intracellular signal as a signal modulator. However, it is still unclear in cell signaling involved in testosterone hormone production. Male fertility depends on the intra-testicular testosterone concentration, which is produced by the Leydig cell in the seminiferous tubules in testes. Although moderate amounts of ROS are needed for normal sperm function, the higher amounts might decrease testosterone production. High ROS decreases testosterone hormone production by dysregulation of hormonal signal from the hypothalamus to the Leydig cell as a result of redox imbalance. Lower level of testosterone fails to support the Leydig cell for the progression of spermatogenesis. Superoxide anion (O), hydroxyl radical (OH) and peroxynitrite (ONOO) could also attack the DNA, lipid and protein, disrupting sperm structure and function and aggravating the milieu of male fertility and spermatogenesis. H regulates intracellular MAPK downstream cAMP signal and Ca signal as a signal modulator to antagonize ROS signaling. Thus H can play a role in modulating signals involved in testosterone hormone production to improve male fertility caused by redox imbalance. We therefore hypothesize that molecular hydrogen may enhance testosterone production via cellular redox balance. By this hypothesis, we anticipate that molecular hydrogen may be an effective remedy in male infertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2018.09.001 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, Institute of New Energy and Low-Carbon Technology, CHINA.
Doping with non-metallic heteroatom is an effective approach to tailor the electronic structure of Ni for enhancing its alkaline hydrogen oxidation reaction (HOR) catalytic performance. However, the modulation of HOR activity of Ni by lattice carbon (LC) atoms has rarely been reported, especially to reveal the rule between the doping effect and activity caused by the content of LC atoms. Here, hydrogen is proposed as a scavenger for LC atoms in the pyrolytic reduction process to finely control the content of LC atoms in Ni.
View Article and Find Full Text PDFCell Res
January 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFSci Rep
January 2025
Radiological Techniques Department, College of Health and Medical Techniques, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq.
This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!