Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to upregulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14348/molcells.2018.0001 | DOI Listing |
Calcif Tissue Int
January 2025
Internal Medicine Division, Federal University of Parana (UFPR), Curitiba, PR, Brazil.
Patients with radiographic axial spondyloarthritis (r-axSpA) experience a higher prevalence of fragility fractures, though the pathophysiology of osteoporosis associated with this disease remains poorly understood. The objective of this study was to evaluate the histomorphometric data in r-axSpA patients. Male r-axSpA patients up to 55 years old were enrolled in this cross-sectional study.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Anatomic Pathology, Faculty of Veterinary Medicine, 400372 Cluj-Napoca, Romania.
Canine extraskeletal osteosarcomas are mesenchymal, osteoid producing tumors that can arise in soft tissues without initial involvement of the bones. An 8-year-old intact male Beagle dog presented with anorexia, abdominal pain, intermittent vomiting and melena. The patient had a history of recurrent ingestion of cotton based-toy fragments, but no prior surgical procedures involving the abdominal cavity.
View Article and Find Full Text PDFBiomater Res
December 2024
Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Guangdong, China.
MethodsX
December 2024
Yale School of Medicine, Department of Orthopaedics and Rehabilitation, PO Box 208071, New Haven, CT 06510, USA.
Sci Rep
November 2024
Biological and Biomedical Engineering, McGill University, Montreal, Canada.
Bone mineralization is a complex process tightly regulated by both biological factors such as collagen maturation as well as physicochemical factors such as pH. A previous model of biological mineralization captured the biological regulation of bone mineralization dynamics, but not the impact of bone microenvironment such as ion availabilities which may be altered in hypo or hyperphosphatemia. To build an integrated model of bone mineralization, we utilized two previously developed models which addressed a distinct aspect of bone mineralization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!