The influenza H1N1 virus is the causative agent of the flu pandemic in the world. Due to the shortage of effective means of control, it is remained the serious threats to public and avian health. To battle the surge of viral outbreaks, new treatments are crucially needed. The viral RNA polymerase, which is responsible for transcription and replication of the RNA genome, is comprised of subunits PA, PB1 and PB2. PA has endonuclease activity and is a well known target for inhibitor and drug design. In the current study, we employed molecular docking, molecular dynamics (MD), MMPBSA, QMMM and ADME studies to find and propose an inhibitor among 11,873 structures against PA. Our molecular docking, MD, MMPBSA and QMMM studies showed that ZINC15340668 has ideal characteristics as a potent PA inhibitor, and can be used in experimental phase and further development. Also, ADME prediction demonstrated that all physico-chemical parameters are within the acceptable range defined for human use. Molecular mechanism based study revealed that upon inhibitor binding; the flexibility of PA backbone is increased. This observation demonstrates the plasticity of PA active site, and it should be noticed in drug design against PA Influenza A viruses. In the final phase of the study, the efficiency of our proposed hit was tested computationally against mutant drug resistant I38T_PA. Our results exhibited that the hit inhibits the I38T_PA in different manner with high potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2018.08.005 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India.
Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N.
View Article and Find Full Text PDFNeurochem Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Biotechnology, Deen Dayal, Upadhyay Gorakhpur University, Gorakhpur, India.
Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds.
View Article and Find Full Text PDFMol Divers
January 2025
Data Science, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
The ATP-binding cassette transporter superfamily plays a pivotal role in cellular detoxification and drug efflux. ATP-binding cassette subfamily G member 2 (ABCG2) referred to as the Breast cancer resistance protein has emerged as a key member involved in multidrug resistance displayed by cancer cells. Understanding the molecular basis of substrate and inhibitor recognition, and binding within the transmembrane domain of ABCG2 is crucial for the development of effective therapeutic strategies.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!