In this paper we report on a bisulfite treatment and PCR amplification-free method for sensitive and selective quantifying of global DNA methylation. Our method utilizes a three-step strategy that involves (i) initial isolation and denaturation of global DNA using the standard isolation protocol and direct adsorption onto a bare gold electrode via gold-DNA affinity interaction, (ii) selective interrogation of methylation sites in adsorbed DNA via methylation-specific 5mC antibody, and (iii) subsequent signal enhancement using an electrochemical-enzymatic redox cycling reaction. In the redox cycling reaction, glucose oxidase (GO) is used as an enzyme label, glucose as a substrate and ruthenium complex as a redox mediator. We initially investigated the enzymatic properties of GO by varying glucose and ruthenium concentration to delineate the redox cyclic mechanism of our assay. Because of the fast electron transfer by ruthenium (Ru) complex and intrinsic signal amplification from GO label, this method could detect as low as 5% methylation level in 50 ng of total DNA input. Moreover, the use of methylation-specific 5mC antibody conjugated GO makes this assay relatively highly selective for DNA methylation analysis. The data obtained from the electrochemical response for different levels of methylation showed excellent interassay reproducibility of RSD (relative standard deviation) < 5% for n = 3. We believe that this inexpensive, rapid, and sensitive assay will find high relevance as an alternative method for DNA methylation analysis both in research and clinical platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2018.10.020 | DOI Listing |
Microsc Res Tech
January 2025
Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.
Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.
View Article and Find Full Text PDFPLoS One
January 2025
Équipe ' Sol & Végétation' (SolVeg), Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia.
Soil health and One Health are global concerns, necessitating the development of refined indicators for effective monitoring. In response, we present the Anaconda R Package, a novel tool designed to enhance the analysis of eDNA data for biomonitoring purposes. Employing a combination of different approaches, this package allows for a comprehensive investigation of species abundance and community composition under diverse conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
Introduction: Antimicrobial resistance (AMR) is a major global healthcare challenge, with limited treatment options due to the decline in new antibiotics. The human oral cavity, home to diverse bacteria, is crucial for maintaining oral and systemic health. Recent studies suggest that saliva may serve as a reservoir for AMR genes.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFSci Rep
January 2025
Research & Development, Lonza Houston, Inc., 14905 Kirby Dr, Houston, TX, 77047, USA.
Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!