The objective of this study was to formulate aripiprazole (ARI)-loaded pH-modulated solid dispersions (SD) to enhance solubility, dissolution, and bioavailability via hot-melt extrusion (HME) technology. Kollidon® 12 PF (PVP) and succinic acid (SA) were selected after solubility screenings of various polymers and acidifiers. Several formulations, varying in screw speed and drug/polymer/acidifier ratios, were extruded using an 11 mm twin-screw extruder and were investigated for the effect of these variables. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to perform solid-state characterizations of the pure drug and extrudates. The aqueous solubility and dissolution were evaluated for the pure drug and milled extrudates. Among the prepared formulations, N6 was chosen for in vivo absorption studies. Solid-state characterization demonstrated the transformation of the crystalline ARI to an amorphous state in the formulations. Each formulation showed increased solubility and dissolution compared to the drug powder. The oral bioavailability (C and AUC) of N6 was significantly improved when compared to the pure ARI. This novel study not only discusses the incorporation of acidifiers in SDs but also the preparation of SDs using HME technology as effective techniques to improve drug release and bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312482 | PMC |
http://dx.doi.org/10.1016/j.ijpharm.2018.11.005 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFInt J Pharm
January 2025
University of Applied Sciences and Arts Northwest. Switzerland, School of Life Sciences, Institute of Pharma Technology, Hofackerstr. 30 CH-4132 Muttenz, Switzerland. Electronic address:
In recent years, deep eutectic solvents (DESs) with their outstanding solubilization properties have emerged as strong candidates for oral enabling formulations of poorly soluble drugs. This study explores the use of drug-based therapeutic DESs (THEDESs) to solubilize a poorly soluble compound with the aim of providing a fixed-dose combination of two complementary therapeutic agents. Specifically, potential anticancer effects of ibuprofen (IBU) are harnessed in a novel type of THEDES to dissolve higher amounts of abiraterone acetate (AbAc), an antitumor agent.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.
Here we demonstrate how a biologically relevant molecule, riboflavin (vitamin B2), operates by a dual mode of action to effectively control crystallization of ammonium urate (NHHU), which is associated with cetacean kidney stones. In situ microfluidics and atomic force microscopy experiments confirm a strong interaction between riboflavin and NHHU crystal surfaces that substantially inhibits layer nucleation and spreading by kinetic mechanisms of step pinning and kink blocking. Riboflavin does not alter the distribution of tautomeric urate isomers, but its adsorption on NHHU crystal surfaces does interfere with the effects of minor urate tautomer by limiting its ability to induce NHHU crystal defects while also suppressing NHHU nucleation and inhibiting crystal growth by 80% at an uncharacteristically low modifier concentration.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.
This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.
Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!