Optimization of balloon coating process for paclitaxel coated balloons via micro-pipetting method.

Int J Pharm

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, United States. Electronic address:

Published: January 2019

Drug coated balloons (DCBs) have proven to be a suitable alternative for the treatment of cardiovascular diseases. They allow for uniform delivery of an antiproliferative drug to the stenotic site without permanent implantation of the device in the patient's body. There are, however, regulatory concerns regarding the lack of data associated with variable drug delivery to the target site, which can be related to the coating process. This study describes the process for an in-house micro-pipetting coating method that incorporates a laboratory-developed coating equation for determining optimal coating parameters. The coating solutions included a common drug of choice, paclitaxel, along with a hydrophilic excipient, such as iopromide. It was found that using a revolution rate of 240 rev/min, a flow rate of 25 µL/min and a translational speed of 0.033 cm/s resulted in visually uniform coatings. High performance liquid chromatography (HPLC) allowed for the determination of paclitaxel content on the balloon surface. Scanning electron microscopy (SEM) enabled analysis of coating thickness and texture at distal, middle, and proximal positions on the balloon; average thicknesses were determined to be 16.4 ± 5.8, 14.8 ± 1.4, and 18.1 ± 3.9 µm, respectively. These optimized coating conditions have been confirmed by in vitro drug release kinetics studies. Overall this study generated a simple and reproducible micro-pipetting coating method for the sustained release of drugs from the drug coated balloons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.11.006DOI Listing

Publication Analysis

Top Keywords

coated balloons
12
coating
9
coating process
8
drug coated
8
micro-pipetting coating
8
coating method
8
drug
6
optimization balloon
4
balloon coating
4
process paclitaxel
4

Similar Publications

An 82-year-old woman with a history of myocardial infarction presented with worsening effort angina. Coronary angiography (CAG) revealed 75% stenosis in the proximal left anterior descending artery (LAD), with intravascular ultrasound (IVUS) identifying a severe calcified nodule near a previously implanted drug-eluting stent. The lesion was treated with intravascular lithotripsy (IVL) and a drug-coated balloon (DCB), avoiding left main crossover stenting.

View Article and Find Full Text PDF

Background: Left main coronary bifurcation lesions account for 50% of left main coronary artery disease cases. Although a drug-coated balloon (DCB) has the advantages of immediate release of the drug to the arterial wall and no remaining struts, there is no conclusive evidence to support DCB use.

Methods & Results: We conducted a systematic review in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement.

View Article and Find Full Text PDF

Adhesive polyelectrolyte coating on PLGA particles prolongs drug retention to vessel lesion.

J Control Release

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China. Electronic address:

Restenosis, the re-narrowing of blood vessels after drug-coated balloons (DCBs), remains a major clinical issue. While rapamycin is the current clinical option for preventing restenosis due to its effectiveness and low toxicity, its delivery is limited by poor tissue absorption and rapid clearance, leading to suboptimal drug retention. Here, we developed the adhesive-polyelectrolyte-coated poly(lactic-co-glycolic acid) (PLGA) particles using in-situ UV-triggered polymerization, encapsulating rapamycin.

View Article and Find Full Text PDF

Background: Few studies investigated the implications of post-PCI QFR and post-PCI ΔQFR (absolute increase of QFR) in de novo lesions of small coronary disease after drug-coated balloon (DCB).

Objectives: We sought to investigate the prognostic implications of post-PCI QFR and post-PCI ΔQFR in patients who received DCB only.

Methods: Patients were divided according to the optimal cutoff value of the post-PCI QFR and the post-PCI ΔQFR.

View Article and Find Full Text PDF

Vessel Wall Histologic Changes in a Porcine Model of Arteriovenous Fistula Stenosis Treated with Percutaneous Transluminal Angioplasty.

J Vasc Interv Radiol

December 2024

Vascular and Interventional Radiology Translational Research Lab, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Article Synopsis
  • The study investigated how different treatments (balloon angioplasty vs. drug-coated balloons) affect the changes in blood vessel tissues following arteriovenous fistula stenosis in pigs with chronic kidney disease.
  • Significant differences in tissue composition were observed, with drug-coated balloons leading to lower neointimal growth and higher endothelial cell counts compared to standard angioplasty.
  • The findings suggest that using drug-coated balloons may improve vessel healing and reduce complications over time, as shown by varied immune cell responses and tissue growth patterns.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!