Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2018.10.016 | DOI Listing |
J Bacteriol
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, People's Republic of China.
Background: Rejection hinders long-term survival in lung transplantation, and no widely accepted biomarkers exist to predict rejection risk. This study aimed to develop and validate a prognostic model using laboratory data to predict the time to first rejection episode in lung transplant recipients.
Methods: Data from 160 lung transplant recipients were retrospectively collected.
Nature
January 2025
Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.
Inflammatory diseases are often chronic and recurrent, and current treatments do not typically remove underlying disease drivers. T cells participate in a wide range of inflammatory diseases such as psoriasis, Crohn's disease, oesophagitis and multiple sclerosis, and clonally expanded antigen-specific T cells may contribute to disease chronicity and recurrence, in part by forming persistent pathogenic memory. Chronic rhinosinusitis and asthma are inflammatory airway diseases that often present as comorbidities.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH.
Background: HSCT conditioning regimens cause massive lysis of hematopoietic cells with release of toxic intracellular molecules into the circulation.
Objectives: To describe the response to oxidative stress early after hemopoietic stem cell transplantation (HSCT) and assess the association of early oxidative stress with later transplant outcomes.
Study Design: Key components of in the body's physiological response to oxidative stress were studied in a cohort of 122 consecutive pediatric allogeneic HSCT recipients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!