Archaeologists often need to date and group artifact types to discern typologies, chronologies, and classifications. For over a century, statisticians have been using classification and clustering techniques to infer patterns in data that can be defined by algorithms. In the case of archaeology, linear regression algorithms are often used to chronologically date features and sites, and pattern recognition is used to develop typologies and classifications. However, archaeological data is often expensive to collect, and analyses are often limited by poor sample sizes and datasets. Here we show that recent advances in computation allow archaeologists to use machine learning based on much of the same statistical theory to address more complex problems using increased computing power and larger and incomplete datasets. This paper approaches the problem of predicting the chronology of archaeological sites through a case study of medieval temples in Angkor, Cambodia. For this study, we have a large dataset of temples with known architectural elements and artifacts; however, less than ten percent of the sample of temples have known dates, and much of the attribute data is incomplete. Our results suggest that the algorithms can predict dates for temples from 821-1150 CE with a 49-66-year average absolute error. We find that this method surpasses traditional supervised and unsupervised statistical approaches for under-specified portions of the dataset and is a promising new method for anthropological inquiry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218026PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205649PLOS

Publication Analysis

Top Keywords

machine learning
8
predicting chronology
8
chronology archaeological
8
archaeological sites
8
sites case
8
case study
8
angkor cambodia
8
temples
5
semi-supervised machine
4
learning approaches
4

Similar Publications

Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.

Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.

View Article and Find Full Text PDF

Evaluating the Immunogenicity Risk of Protein Therapeutics by Augmenting T Cell Epitope Prediction with Clinical Factors.

AAPS J

January 2025

Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.

Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.

View Article and Find Full Text PDF

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.

View Article and Find Full Text PDF

The aesthetic understanding has found its place in dental clinics and prosthetic dental treatment. Determining the appropriate prosthetic tooth color between the clinician, patient and technician is a difficult process due to metamerism. Metamerism, known as the different perception of the color of an object under different light sources, is caused by the lighting differences between the laboratory and the dental clinic.

View Article and Find Full Text PDF

Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!