AI Article Synopsis

Article Abstract

Motivation: Unique sequence regions are associated with genetic function in vertebrate genomes. However, measuring uniqueness, or absence of long repeats, along a genome is conceptually and computationally difficult. Here we use a variant of the Lempel-Ziv complexity, the match complexity, Cm, and augment it by deriving its null distribution for random sequences. We then apply Cm to the human and mouse genomes to investigate the relationship between sequence complexity and function.

Results: We implemented Cm in the program macle and show through simulation that the newly derived null distribution of Cm is accurate. This allows us to delineate high-complexity regions in the human and mouse genomes. Using our program macle2go, we find that these regions are twofold enriched for genes. Moreover, the genes contained in these regions are more than 10-fold enriched for developmental functions.

Availability And Implementation: Source code for macle and macle2go is available from www.github.com/evolbioinf/macle and www.github.com/evolbioinf/macle2go, respectively; Cm browser tracks from guanine.evolbio.mgp.de/complexity.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546125PMC
http://dx.doi.org/10.1093/bioinformatics/bty922DOI Listing

Publication Analysis

Top Keywords

high-complexity regions
8
enriched developmental
8
null distribution
8
human mouse
8
mouse genomes
8
regions mammalian
4
genomes
4
mammalian genomes
4
genomes enriched
4
developmental genes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!