Environmental conditions, such as the light-dark cycle and temperature, affect the display of circadian rhythmicity and locomotor activity patterns in mammals. Here, we tested the hypothesis that manipulating these environmental conditions would affect wheel-running activity patterns in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus). Grass rats are diurnal in the field, however, a subset switch from a day-active pattern to a night-active pattern of activity after the introduction of a running wheel. The mechanism of this chronotype switch remains largely unknown. In the present study, grass rats were presented with running wheels in 12:12 light-dark conditions. First, subjects were exposed to 25 °C during the day and 21 °C at night, which resulted in 100% of grass rats expressing diurnal behavior. Subjects were then exposed to manipulations of elevated ambient temperature, which resulted in a significant reduction in wheel-running activity. Reducing ambient temperature below 21 °C, however, did not disrupt the expression of diurnality or overall activity. Next, lighting intensity was reduced, which resulted in a switch from a diurnal to a nocturnal chronotype in a subset of animals and reduced overall wheel-running activity. Upon return to baseline lighting intensity, patterns of diurnal activity were restored. Altogether, increases in ambient temperature and decreases in lighting intensity significantly reduced overall wheel-running activity. Importantly, dim light resulted in a temporal niche switch in a subset of grass rats, suggesting a critical role for lighting intensity on the expression of wheel-running activity patterns. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/com0000154DOI Listing

Publication Analysis

Top Keywords

lighting intensity
20
wheel-running activity
20
ambient temperature
16
grass rats
16
activity patterns
12
activity
9
diurnal rodent
8
rodent nile
8
nile grass
8
grass rat
8

Similar Publications

Lighting systems account for a significant proportion of energy consumption in buildings. Therefore, energy conservation within these systems can greatly enhance overall building energy efficiency. This study proposes a control strategy for LED lamps by adjusting lighting intensity and improving the performance of electric luminaires.

View Article and Find Full Text PDF

Sleep and circadian rhythms after traumatic brain injury.

Handb Clin Neurol

January 2025

Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada. Electronic address:

Traumatic brain injury (TBI) is a serious public health concern and is one of the major causes of death and chronic disability in young individuals. Sleep-wake disturbances are among the most persistent and debilitating consequences of TBI and are reported by 50%-70% of TBI patients regardless of TBI severity. Excessive daytime sleepiness, fatigue, hypersomnia, and insomnia are the most common sleep disturbances in TBI patients.

View Article and Find Full Text PDF

Evaluation of tooth-specific optical properties for the development of a non-invasive pulp diagnostic system using Transmitted-light plethysmography: An in vitro study.

Arch Oral Biol

January 2025

Department of Pediatric Dentistry/Dentistry for Persons with Special Needs, Division of Oral Restitution, Graduate School, Institute of Science Tokyo, Japan.

Objectives: Transmitted-light plethysmography (TLP) is an objective and non-invasive pulp diagnosis method that has already been validated for applications for incisors. However, there is a demand for TLP use in the molars, it has not yet been established for this application. This study investigated the optimal light source wavelengths for TLP in premolars, to establish a pulp diagnosis system based on measuring pulpal blood flow.

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!