A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild-type petioles was identified through a forward genetic screen. In addition to stem-specific elongation, this mutant, named tomato internode elongated -1 (tie-1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild-type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2-oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2-oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ-specific elongation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.14145 | DOI Listing |
Int J Biol Macromol
December 2024
Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China. Electronic address:
Moso bamboo is renowned for its exceptional growth rate, driven by rapid cell proliferation and elongation in culm internodes. This study uncovers the novel role of brassinosteroids (BRs) in regulating bamboo shoot growth, revealing a previously unknown negative correlation between BR levels and growth rates. Notably, we identify BRASSINAZOLE RESISTANT1 (BZR1) acts as a key transcription factor in BR signaling, governing the expression of genes involved in BR biosynthesis and growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
School of Life Sciences, Southwest University, Chongqing 400715, China.
Plant Sci
February 2025
Chemical Materials for Agricultural Cross disciplinary Joint Laboratory, Hunan Provincial Engineering Technology Research Center for Optical Agriculture, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Light spectrum plays an essential role in influencing the growth and development of vegetable seedlings in industrial seedling raising. Currently, blue light, red light, and their combination are utilized in industrial seedling raising. However, the theoretical basis behind the screening of red and blue light combinations remains unclear.
View Article and Find Full Text PDFHortic Res
November 2024
Institute of Plant Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel.
In cannabis seedlings, the initiation of solitary flowers is photoperiod-independent. However, when cannabis reaches the adult stage, short-day photoperiod (SD) triggers branching of the shoot apex and a reduction in internode length, leading to development of a condensed inflorescence. We demonstrate that SD affects cannabis plants in two distinct phases: the first includes rapid elongation of the internodes and main stem, and occurring from Day 5 to Day 10 of plant cultivation under SD; in the second phase, elongation of newly developed internodes ceases, and a condensed inflorescence is formed.
View Article and Find Full Text PDFPhysiol Plant
November 2024
College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!