Previously, we described tracheal rat rings relaxation by several flavonoids, being 6-hydroxyflavone (6-HOF) the most active derivative of the series. Thus, its mechanism of action was determined in an ex vivo tracheal rat ring bioassay. The anti-asthmatic effect was assayed in in vivo OVAlbumin (OVA)-sensitized guinea pigs. Finally, the toxicological profile of 6-HOF was studied based on Organization of Economic Cooperation and Development guidelines with modifications. 6-HOF-induced relaxation appears to be related with receptor-operated calcium channel and voltage-operated calcium channel blockade as the main mechanism of action, and also through the production of relaxant second messengers NO and cGMP. Molecular docking supports that 6-HOF acts as calcium channel blocker and by activation of nitric oxide synthase. In addition, the in vivo anti-asthmatic experiments demonstrate the dose-dependent significant anti-allergic effect of 6-HOF induced by OVA, with best activity at 50 /kg. Finally, toxicological studies determined a LD50 > 2,000 mg/kg and, after 28 day of treatment with 6-HOF (50 mg/kg) by intragastric route, mice did not exhibit evidence of any significant toxicity. In conclusion, experiments showed that 6-HOF exerts significant relaxant activity through calcium channel blockade, and possibly, by NO/cGMP-system stimulation on rat trachea, which interferes with the contraction mechanism of smooth muscle cells in the airways. In addition, the flavonoid shows potential anti-asthmatic properties in an anti-allergic pathway. Furthermore, because the pharmacological and safety evidence, we propose this flavonoid as lead for the development of a novel therapeutic agent for the treatment of asthma and related respiratory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ddr.21484DOI Listing

Publication Analysis

Top Keywords

calcium channel
16
toxicological studies
8
tracheal rat
8
mechanism action
8
finally toxicological
8
channel blockade
8
6-hof
6
functional mechanism
4
mechanism tracheal
4
tracheal relaxation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!