Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive and incapacitating decay of cognitive, neuropsychiatric, and behavioral manifestations. L-tryptophan is the precursor amino acid of serotonin, which is a neurotransmitter responsible for mood balance and the sense of well-being and can be administered in the form of nanoparticles.
Objective: This study analyzed the effectiveness of L-tryptophan nanoparticles and L-tryptophan on behavioral physiological alterations resulting from AD in animal models.
Methods: The sample consisted of 50 Rattus norvegicus rats, divided in 10 groups with 5 animals each: one negative control (NC), three positive control groups (C3, C7, and C21), three groups treated with L-tryptophan nanoparticles (T3N, T7N, and T21N) at the concentration of 1.5 mg, and three groups treated with L-tryptophan (T3L, T7L, and T21L) at the concentration of 1.5 mg. The rats underwent stereotactic surgery to induce AD through the injection of amyloid beta-amyloid peptide1-42 in the intracerebroventricular region. All rats were submitted to pre- and post-surgery and post-treatment motor behavior evaluation through the Later Water Maze (LWM) and elevated cross-labyrinth (ECL). Histological analysis was performed to verify the presence of senile plaques, and the statistical analysis used the unpaired T-test.
Results: Significant intergroup differences were observed in some of the evaluated parameters between treated and untreated groups.
Conclusion: It was concluded that the treatment with L-tryptophan nanoparticles was beneficial to improve behavioral reactions in the Alzheimer's model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871527317666181105111157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!