AI Article Synopsis

  • Chinese cordyceps, a type of caterpillar fungus found on the Tibetan Plateau, is highly valued in traditional Chinese medicine and has recently been cultivated on a large scale after decades of research.
  • The successful artificial cultivation relies on a comprehensive understanding of the fungus's biology, its host larvae, and recreating the Tibetan alpine environment, leading to significant production increases from 2.5 to 10 tons annually from 2014 to 2016.
  • This advancement in cultivation not only meets human demand but also ensures high-quality products while minimizing contamination, paving the way for further research on the complex interactions between the fungus and its host.

Article Abstract

Chinese cordyceps, an entity of the Chinese caterpillar fungus (Ophiocordyceps sinensis, syn. Cordyceps sinensis) that parasitizes ghost moth larvae, is one of the best known traditional Chinese medicines and is found exclusively on the Tibetan Plateau with limited natural resources. Although the fungus O. sinensis can grow on artificial substrates and the ghost moth has been successfully reared, the large-scale artificial cultivation of Chinese cordyceps has only recently been accomplished after several decades of efforts and attempts. In this article, research progress related to this breakthrough from living habitats, the life history of the fungus, its host insect, fungal isolation and culture, host larvae rearing, infection cycle of the fungus to the host, primordium induction, and fruiting body development have been reviewed. An understanding of the basic biology of O. sinensis, its host insect and the simulation of the Tibetan alpine environment resulted in the success of artificial cultivation on a large scale. Practical workshop production has reached annual yields of 2.5, 5, and 10 tons in 2014, 2015, and 2016, respectively. There was no difference in the chemical components detected between the cultivated and natural Chinese cordyceps. However, the artificial cultivation system can be controlled to avoid heavy metal contamination and results in high-quality products. Although omics studies, including genomic, transcriptomic, proteomic, and metabolomic studies, have helped to understand the biology of the fungus, the success of the artificial cultivation of the Chinese cordyceps is clearly a milestone and provides the possibility for research on the in-depth mechanisms of the interaction between the fungus and host insects and their adaptation to the harsh habitats. This cultivation will not only result in a large industry to alleviate the pressure of human demand but also protect the limited natural resources for sustainable utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07388551.2018.1531820DOI Listing

Publication Analysis

Top Keywords

artificial cultivation
20
chinese cordyceps
20
cultivation chinese
12
fungus host
12
ghost moth
8
limited natural
8
natural resources
8
host insect
8
success artificial
8
chinese
7

Similar Publications

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Excessive total suspended matter (TSM) concentrations can exert a considerable impact on the growth of aquatic organisms in fishponds, representing a significant risk to aquaculture health. This study revised existing unified models using empirical data to develop an optimized TSM retrieval model tailored for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (R = 0.69, RMSE = 7.

View Article and Find Full Text PDF

This research explores the determinants affecting academic researchers' acceptance of AI writing tools using the Theory of Reasoned Action (TRA). The impact of attitudes, subjective norms, and perceived barriers on researchers' intentions to adopt these technologies is examined through a cross-sectional survey of 150 researchers. Structural Equation Modeling (SEM) is employed to evaluate the measurement and structural models.

View Article and Find Full Text PDF

Early Microcirculatory Dysfunction on Perfusion CT Is Related to Prognosis After Aneurysmal Subarachnoid Hemorrhage.

Transl Stroke Res

January 2025

Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4 Ring West Road, Beijing, 100070, Fengtai District, China.

Microcirculatory dysfunction is an important pathophysiology mechanism of early brain injury after aneurysmal subarachnoid hemorrhage (aSAH), which contributes to poor outcomes. The study was performed in Beijing Tiantan Hospital from October 2020 to July 2023. Patients with aSAH who underwent computed tomographic perfusion (CTP) within 24 h after ictus were enrolled prospectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!