Pyramiding resistance genes is predicted to increase the durability of resistant rice varieties against phloem-feeding herbivores. We examined responses by the green leafhopper, (Hemiptera: Cicadellidae), to near-isogenic rice lines with zero, one and two resistance genes. The recurrent parent (T65) and monogenic lines (NIL and NIL) with genes for resistance to the green rice leafhopper, (Hemiptera: Cicadellidae), were susceptible to the green leafhopper, but the pyramided line (PYL) was highly resistant to the green leafhopper. We selected green leafhoppers, , from five sites in the Philippines for over 20 generations on each of the four lines. Populations selected on PYL gained partial virulence (feeding and development equal to that on T65) to the pyramided line within 10 generations and complete virulence (egg-laying equal to that on T65) within 20 generations. After 20 generations of rearing on the susceptible monogenic lines, green leafhoppers were also capable of developing and laying eggs on PYL. Furthermore, green leafhoppers reared on the susceptible NIL for 20 generations showed equal preferences for T65 and PYL in choice bioassays. Our results indicate that previous long-term exposure to ineffective genes (including unperceived resistance genes) could dramatically reduce the durability of pyramided resistance. We suggest that informed crop management and deployment strategies should be developed to accompany rice lines with pyramided resistance and avoid the build-up of virulent herbivore populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106693PMC
http://dx.doi.org/10.1016/j.cropro.2018.07.010DOI Listing

Publication Analysis

Top Keywords

pyramided resistance
12
resistance genes
12
green leafhopper
12
green leafhoppers
12
rice leafhopper
8
exposure ineffective
8
ineffective genes
8
leafhopper hemiptera
8
hemiptera cicadellidae
8
rice lines
8

Similar Publications

Introduction: Stripe rust, caused by f. sp. , poses a significant threat to wheat quality and production worldwide.

View Article and Find Full Text PDF

Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding.

Plant Commun

December 2024

State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China. Electronic address:

High-quality genome information is essential for efficiently deciphering and improving crop traits. Here we report a highly contiguous and accurate hexaploid genome assembly for the key wheat breeding parent Zhou8425B, an elite 1BL/1RS translocation line with durable adult plant resistance (APR) against yellow rust (YR) disease. By integrating HiFi and Hi-C sequencing reads, a 14.

View Article and Find Full Text PDF

Molecular identification of a Pm4 allele conferring powdery mildew resistance in durum wheat DR88.

BMC Plant Biol

December 2024

Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.

Article Synopsis
  • Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a highly destructive disease impacting wheat, particularly affecting common wheat, but durum wheat serves as a key resource for enhancement efforts.* -
  • The study identified a durum wheat variety (DR88) with strong resistance to powdery mildew, localizing the dominant resistance gene, PmDR88, to a specific region on chromosome arm 2AL and confirming its association with the Pm4 locus through extensive genotyping.* -
  • Despite PmDR88 sharing amino acid sequences with the Pm4d allele, it has distinct expression patterns; two complementary DNA markers were developed for efficient marker-assisted selection to integrate this
View Article and Find Full Text PDF

Cry2Ab2 is a Bacillus thuringiensis (Bt) protein that has been pyramided with Cry1A.105 in transgenic maize and Cry1Ac in cotton to control some major lepidopteran pests including the corn earworm/bollworm, Helicoverpa zea (Boddie). However, the widespread occurrence of resistance of this pest to the pyramided Cry1A/Cry2A crops in the southern region of the United State has become a threat to the sustainability of the technology.

View Article and Find Full Text PDF

The brown planthopper (BPH; Stål) is a devastating pest that causes severe rice yield losses in Asia. Introducing multiple BPH resistance genes into rice cultivars is an effective and sustainable way to mitigate yield losses. A traditional rice cultivar, 'Rathu Heenati', has durable BPH resistance due to multiple resistance genes (including and ) and quantitative trait loci (QTLs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!